版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.2
不等关系与不等式.1.用不等式或不等式组表示不等关系.3.比较两个代数式的大小——作差比较法→判断符号作差→变形→得出结论复习回顾.证明:
性质1表明,把不等式的左边和右边交换位置,所得不等式与原不等式异向,我们把这种性质称为不等式的对称性。性质1:如果a>b,那么b<a;如果b<a,那么a>b.不等式的性质.证明:(传递性)这个性质也可以表示为c<b,b<a,则c<a.这个性质是不等式的传递性。性质2:如果a>b,b>c,那么a>c..证明:性质3表明,不等式的两边都加上同一个实数,所得的不等式与原不等式同向.a+b>ca+b+(-b)>c+(-b)a>c-b.结论:不等式中的任何一项都可以改变符号后移到不等式另一边(移项法则)性质3:如果a>b,则a+c>b+c..证明:性质4:如果a>b,c>0,则ac>bc;如果a>b,c<0,则ac<bc.性质5:如果a>b,c>d,则a+c>b+d.证明:因为a>b,所以a+c>b+c,又因为c>d,所以b+c>b+d,根据不等式的传递性得a+c>b+d..几个同向不等式的两边分别相加,所得的不等式与原不等式同向.性质6:如果a>b>0,c>d>0,则ac>bd.证明:因为a>b,c>0,所以ac>bc,又因为c>d,b>0,所以bc>bd,根据不等式的传递性得ac>bd。几个两边都是正数的同向不等式的两边分别相乘,所得的不等式与原不等式同向..性质7:性质7说明,当不等式两边都是正数时,不等式两边同时乘方所得的不等式和原不等式同号.性质8:性质8说明,当不等式的两边都是正数时,不等式两边同时开方所得不等式与原不等式同向.以上这些关于不等式的事实和性质是解决不等式问题的基本依据.1.对于实数判断下列命题的真假(1)若则(5)若则(3)若则(4)若则假(2)若则真假假真注:(1)运用不等式的性质时,应注意不等式成立的条件。(2)一般地,要判断一个命题为真命题,必须严格加以证明,要判断一个命题为假命题,可举反例,或者由题中条件推出与结论相反的结果。思考1..例1.已知a>b>0,c<0,求证.>证明:因为a>b>0,于是即由c<0,
得,即所以ab>0,>0.思考?能否用作差法证明?.例2.应用不等式的性质,证明下列不等式:(1)已知a>b,ab>0,求证:;证明:(1)因为ab>0,所以又因为a>b,所以即因此.(2)已知a>b>0,0<c<d,求证:证明:因为0<c<d,根据(1)的结论得又因为a>b>0,所以即.1.已知a>b,不等式:(1)a2>b2;(2);(3)成立的个数是()(A)0(B)1(C)2(D)3A2.如果a>b>0,c>d>0,则下列不等式中不正确的是()A.a-d>b-cB.C.a+d>b+cD.ac>bdC练习.3.当a>b>c时,下列不等式恒成立的是()A.ab>acB.(a-b)∣c-b∣>0C.a∣c∣>b∣c∣D.∣ab∣>∣bc|B18<x-2y<32,(2)若-3<a<b<1,-2<c<-1,求(a-b)c2的取值范围.因为-4<a-b<0,1<c2<4,所以-16<(a-b)c2<0.5..求:的取值范围.已知:函数解:因为f(x)=ax2-c,所以解之得思考2..所以f(3)=9a-c=因为所以两式相加得-1≤f(3)≤20.还有其它解法吗?提示:整体构造利用对应系数相等试一试,答案一样吗?本题中a与c是一个有联系的有机整体,不要割断它们之间的联系注意:.不等式的性质内容对称性传递性加法性质乘法性质指数运算性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第11章流媒体应用
- 《青春期律动》课件
- 2021-2022年注册测绘师《测绘管理与法律法规》试题与答案(D卷)
- 《穿刺壁血管》课件
- 2024年湟中县第二人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年湘潭县中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年渭源县会川人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 整本书阅读《红楼梦》诗词对比鉴赏 说课稿 2023-2024学年统编版高中语文必修下册
- 人教版历史与社会八年级下册第八单元第三课第一框维新变法运动说课稿
- 2024年海口市振东区卫生院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 烫伤的防治与护理
- 施工现场临时用电安全监理检查表
- 2024年全国职业院校技能大赛高职组(护理技能赛项)备赛试题库(含答案)
- 2024小英新人教版PEP三年级上册全册单元测试测评卷
- 供应链管理规章制度
- 2023非预应力钢筒混凝土管
- 2024年3月八省八校T8第二次联考语文试题及答案
- 程序设计基础-C智慧树知到期末考试答案章节答案2024年四川师范大学
- 驾驶员三年内工作总结
- 广东省深圳市罗湖区2023-2024学年二年级下学期期末考试数学试题
- 2023年第八届“鹏程杯”六年级语文邀请赛试卷(初赛)
评论
0/150
提交评论