第6章-压电传感器_第1页
第6章-压电传感器_第2页
第6章-压电传感器_第3页
第6章-压电传感器_第4页
第6章-压电传感器_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

如果从石英晶体中切下一个平行六面体并使其晶面分别平行于Z-Z、Y-Y、X-X轴线。晶片在正常情况下呈现电性。通常把沿电轴(X轴)方向的作用力产生的压电效应称为“纵向压电效应”,把沿机械轴(Y轴)方向的作用力产生的压电效应称为“横向压电效应”,沿光轴(Z轴)方向的作用力不产生压电效应。沿相对两棱加力时,则产生切向效应。压电式传感器主要是利用纵向压电效应。2023/2/52023/2/5在y、z方向上的分量为:(P1+P2+P3)y

=0(P1+P2+P3)z=0当晶体受到沿x方向的压力(Fx<0)作用时,晶体沿x方向将产生收缩,正、负离子的相对位置随之发生变化,如图6-3(b)所示。此时正、负电荷中心不再重合,电偶极矩P1减小,P2、P3增大,它们在x

方向上的分量不再等于零:(P1+P2+P3)x>0

(b)Fx<0x+Fxy+-Fx-P1P2P3--++-+++--2023/2/5当晶体受到沿x方向的拉力(Fx

>0)作用时,其变化情况如图5-3(c)所示。电偶极矩P1增大,P2、P3减小,此时它们在x、y、z三个方向上的分量为

(P1+P2+P3)x<0(P1+P2+P3)y=0(P1+P2+P3)z=0在x轴的正向出现负电荷,在y、z方向依然不出现电荷。(c)Fx>0yx+++FxFxP2P3P1+++--+----2023/2/52023/2/5可见,当晶体受到沿x(电轴)方向的力Fx

作用时,它在x方向产生正压电效应,而y、z方向则不产生压电效应。晶体在y轴方向受力Fy作用下的情况与Fx

相似。当Fy

>0时,晶体的形变与图6-3(b)相似;当Fy

<0时,则与图6-3(c)相似。由此可见,晶体在y(即机械轴)方向的力

Fy作用下,在x方向产生正压电效应,在y、z方向同样不产生压电效应。2023/2/5式中:——y轴方向受力的压电系数,

a、b——晶体切片长度和厚度。电荷Qx和Qy的符号由所受力的性质决定。2023/2/5石英晶体受力方向与电荷极性关系+++++(a)Fxx-----Fx(b)x+++++-----xFy(c)+++++-----Fy(d)x+++++-----2023/2/5①当晶片受到x方向的压力作用时,qx只与作用力Fx成正比,而与晶片的几何尺寸无关;②沿机械轴y方向向晶片施加压力时,产生的电荷是与几何尺寸有关的;③石英晶体不是在任何方向都存在压电效应的;④晶体在哪个方向上有正压电效应,则在此方向上一定存在逆压电效应;⑤无论是正或逆压电效应,其作用力(或应变)与电荷(或电场强度)之间皆呈线性关系。2023/2/5在陶瓷上施加外电场时,电畴的极化方向发生转动,趋向于按外电场方向的排列,从而使材料得到极化。外电场愈强,就有更多的电畴更完全地转向外电场方向。让外电场强度大到使材料的极化达到饱和的程度,即所有电畴极化方向都整齐地与外电场方向一致时,当外电场去掉后,电畴的极化方向基本没变化,即剩余极化强度很大,这时的材料才具有压电特性。2023/2/5陶瓷片内的极化强度总是以电偶极矩的形式表现出来,即在陶瓷的一端出现正束缚电荷,另一端出现负束缚电荷。由于束缚电荷的作用,在陶瓷片的电极面上吸附了一层来自外界的自由电荷。这些自由电荷与陶瓷片内的束缚电荷符号相反而数量相等,它屏蔽和抵消了陶瓷片内极化强度对外界的作用。陶瓷片内束缚电荷与电极上吸附的自由电荷示意图极化方向-----+++++自由电荷束缚电荷电极电极-----+++++2023/2/5如果在陶瓷片上加一个与极化方向平行的压力F,陶瓷片将产生压缩形变。片内的正、负束缚电荷之间的距离变小,极化强度也变小。释放部分吸附在电极上的自由电荷,而出现放电现象。当压力撤消后,陶瓷片恢复原状,极化强度也变大,因此电极上又吸附一部分自由电荷而出现充电现象。

——正压电效应-F+-----+++++-----+++++极化方向正压电效应示意图2023/2/52023/2/5若在片上加一个与极化方向相同的电场,电场的作用使极化强度增大。陶瓷片内的正、负束缚电荷之间距离也增大,即陶瓷片沿极化方向产生伸长形变。同理,如果外加电场的方向与极化方向相反,则陶瓷片沿极化方向产生缩短形变。这种由于电效应而转变为机械效应,或者由电能转变为机械能的现象,就是压电陶瓷的逆压电效应。图6-11逆压电效应示意图E电场方向极化方向-----+++++-----+++++2023/2/5对于压电陶瓷,通常取它的极化方向为z轴,垂直于z轴的平面上任何直线都可作为x或y轴,在是和石英晶体的不同之处。当压电陶瓷在沿极化方向受力时,则在垂直于z轴的上、下两表面上将会出现电荷,其电荷量Q与作用力Fz成正比,即式中:

d33——压电陶瓷的压电系数;

F——作用力。2023/2/5压电陶瓷的压电系数比石英晶体的大得多,所以采用压电陶瓷制作的压电式传感器的灵敏度较高。极化处理后的压电陶瓷材料的剩余极化强度和特性与温度有关,它的参数也随时间变化,从而使其压电特性减弱。2023/2/5压电材料应具备以下几个主要特性:①转换性能。要求具有较大的压电常数。②机械性能。机械强度高、刚度大。③电性能。高电阻率和大介电常数。④环境适应性。温度和湿度稳定性要好,要求具有较高的居里点,获得较宽的工作温度范围。⑤时间稳定性。要求压电性能不随时间变化。压电材料介绍2023/2/5压电晶片的连接方式在实际应用中,由于单片的输出电荷很小,因此,组成压电式传感器的晶片不止一片,常常将两片或两片以上的晶片粘结在一起。粘结的方法有两种,即并联和串联。6.2压电式传感器的等效电路2023/2/5压电晶片的连接方式并联和串联并联方法两片压电晶片的负电荷集中在中间电极上,正电荷集中在两侧的电极上,传感器的电容量大、输出电荷量大、时间常数也大,故这种传感器适用于测量缓变信号及电荷量输出信号。(a)并联++---+2023/2/5串联方法正电荷集中于上极板,负电荷集中于下极板,传感器本身的电容量小、响应快、输出电压大,故这种传感器适用于测量以电压作输出的信号和频率较高的信号。(b)串联+--+2023/2/52023/2/5当压电晶体承受应力作用时,在它的两个极面上出现极性相反但电量相等的电荷。故可把压电传感器看成一个电荷源与一个电容并联的电荷发生器。(a)qCa其电容量为:2023/2/5当两极板聚集异性电荷时,板间就呈现出一定的电压,其大小为因此,压电传感器还可以等效为电压源Ua和一个电容器Ca的串联电路,如图(b)。UaCa(b)2023/2/5图6-5压电传感器的等效电路(a)电压源;(b)电荷源2023/2/5实际使用时,压电传感器通过导线与测量仪器相连接,连接导线的等效电容CC、前置放大器的输入电阻Ri、输入电容Ci对电路的影响就必须一起考虑进去。当考虑了压电元件的绝缘电阻Ra以后,压电传感器完整的等效电路可表示成图6-6所示的电压等效电路(a)和电荷等效电路(b)。这两种等效电路是完全等效的。2023/2/5图6-6压电传感器的完整等效电路(a)电压源;(b)电荷源2023/2/5值得注意的是:利用压电式传感器测量静态或准静态量值时,必须采取一定的措施,使电荷从压电晶片上经测量电路的漏失减小到足够小程度。而在动态力作用下,电荷可以得到不断补充,可以供给测量电路一定的电流,故压电传感器适宜作动态测量。2023/2/5由于压电式传感器的输出电信号很微弱,通常先把传感器信号先输入到高输入阻抗的前置放大器中,经过阻抗交换以后,方可用一般的放大检波电路再将信号输入到指示仪表或记录器中。(其中,测量电路的关键在于高阻抗输入的前置放大器。)6.3压电式传感器的测量电路2023/2/5前置放大器的作用:一是将传感器的高阻抗输出变换为低阻抗输出;二是放大传感器输出的微弱电信号。前置放大器电路有两种形式:一是用电阻反馈的电压放大器,其输出电压与输入电压(即传感器的输出)成正比;另一种是用带电容板反馈的电荷放大器,其输出电压与输入电荷成正比。由于电荷放大器电路的电缆长度变化的影响不大,几乎可以忽略不计,故而电荷放大器应用日益广泛。2023/2/5图6-7压电传感器接放大器的等效电路(a)放大器电路;(b)等效电路1.电压放大器(阻抗变换器)2023/2/5在上图(b)中,电阻R=RaRi/(Ra+Ri),电容C=Cc+Ci,而ua=q/Ca,若压电元件受正弦力f=Fmsinωt的作用,则其电压为(6-6)式中:

Um——压电元件输出电压幅值,

Um=dFm/Ca;

d——压电系数。2023/2/5由此可得放大器输入端电压Ui,其复数形式为

(6-7)Ui的幅值Uim为.输入电压和作用力之间相位差为(6-8)(6-9)2023/2/5在理想情况下,传感器的Ra电阻值与前置放大器输入电阻Ri都为无限大,即ω(Ca+Cc+Ci)R>>1,那么由式(6-8)可知,理想情况下输入电压幅值Uim为上式表明前置放大器输入电压Uim与频率无关,一般在ω/ω0>3时,就可以认为Uim与ω无关,ω0表示测量电路时间常数之倒数,即(6-10)2023/2/5这表明压电传感器有很好的高频响应,但是,当作用于压电元件的力为静态力(ω=0)时,前置放大器的输出电压等于零,因为电荷会通过放大器输入电阻和传感器本身漏电阻漏掉,所以压电传感器不能用于静态力的测量。2023/2/5当ω(Ca+Cc+Ci)R>>1时,放大器输入电压Uim如式(5-10)所示,式中Cc为连接电缆电容,当电缆长度改变时,Cc也将改变,因而Uim也随之变化。因此,压电传感器与前置放大器之间连接电缆不能随意更换,否则将引入测量误差。2023/2/5下图给出了一个电压放大器的具体电路。它具有很高的输入阻抗(1000MΩ)和很低的输出阻抗(<100Ω),因此使用该阻抗变换器可将高阻抗的压电传感器与一般放大器匹配。电压放大器2023/2/5BG1为MOS场效应管,做阻抗变换,R3≥100MΩ;BG2管对输入端形成负反馈,以进一步提高输入阻抗。R4既是BG1的源极接地电阻,也是BG2的负载电阻,R4上的交变电压通过C2反馈到场效应管BG1的输入端,保证较高的交流输入阻抗。由BG1构成的输入极,其输入阻抗为:引进BG2,构成第二级对第一级负反馈后,其输入阻抗为:式中Au是BG1源极输出器的电压增益,其值接近1。2023/2/5图6-8电荷放大器等效电路2.电荷放大器2023/2/5电荷放大器常作为压电传感器的输入电路,由一个反馈电容Cr和高增益运算放大器构成。由于运算放大器输入阻抗极高,放大器输入端几乎没有分流,故可略去Ra和Ri并联电阻。式中:Uo——放大器输出电压;

Ur——反馈电容两端电压。2023/2/5由运算放大器基本特性,可求出电荷放大器的输出电压通常A=104~108,因此,当满足(1+A)Cr>>Ca+Cc+Ci时,上式可表示为:(6-15)(6-14)2023/2/5由上式知,电荷放大器的输出电压Uo只取决于输入电荷与反馈电容Cr,与电缆电容Cc无关,且与q成正比,因此,采用电荷放大器时,即使连接电缆长度在百米以上,其灵敏度也无明显变化,这是电荷放大器的最大特点。在实际电路中,Cr的容量做成可选择的,范围一般为100~104pF。2023/2/5压电式传感器在测量低压力时线性度不好,主要是传感器受力系统中力传递系数非线性所致。为此,在力传递系统中加入预加力,称预载。这除了消除低压力使用中的非线性外,还可以消除传感器内外接触表面的间隙,提高刚度。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论