版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《三角形角和》教设计《三形内角》教设计1教学内:教材第67页例6、“做一做”及教材第页练习十六第1~3题。教学目:1.通过动手操作,使学生理解并掌握三角形的内角和是的结论。2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。3.培养学生动手动脑及分析推理能力。重点难:掌握三角形的内角和是180°。教学准:三角形卡片、量角器、直尺。导学过:一、复1、什么是平角?平角是多少度?2、计算角的度数。3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)二、新(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。3、猜想:三角形的内角和是多少度。4、验证:(1)初证:用一副三角板说明直角三角形的内角和是。(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)(4)汇报结论(清楚明白的给小组加优秀分)5、结论:修改板书,把“?”去掉,写“是”。6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)三、知识运用(课件出示练习题,生解答)1、填空(1)一个三角形,它的两个内角度数之和是,第三个内角是。(2)一个直角三角形的一个锐角是50,则另一个锐角是。(3)等边三角形的3个内角都是。(4)一个等腰三角形,它的一个底角是,那么它的顶角是()。(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。2、判断(1)一个三角形中最多有两个直角。()(2)锐角三角形任意两个内角的和大于。()(3)有一个角是60的等腰三角形不一定是等边三角形。()
(4)三角形任意两个内角的和都大于第三个内角。()(5)直角三角形中的两个锐角的和等于。()四、拓探究根据所学的知识,你能想办法求出四边形、五边形的内角和吗?1、小组讨论。2、汇报结果。3、课件提示帮助理解。五、自评价根据学卡要求给自己评出“优”“良好”“合格”。六、谈自己本课的收。教学反思今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是。本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的
内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。《三形内角》教设计2【教材析】《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。【学生析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。【学习标】
知识目标:掌握三角形内角和是180度这一规律,并能实际应用。能力目标:培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。情感目标:让学生体会几何图形内在的结构美。【教学过程】一、情景激趣,质疑猜想。播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是。我们的内角和是一样大的。”师:想一想,什么是三角形的三个内角的和。生:三角形的三个内角的度数和。师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?学生进行猜想,自由发言。(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)二、自主探究,验证猜想师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是180°,你能设法验证这个猜想吗?生1:能。我量出三角形的三个内角和度数,加起来是否接近(量的时候可能会有些误差)。生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。生3:我把三角形的三个角撕下来,拼一拼是否。生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。
师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)三、交流评价,归纳结论。学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。实验报告单实验名称三角形内角和实验目的探究三角形内角和是多少度。实验材料尺子剪刀量角器锐角三角形纸片直角三角形纸片钝角三角形纸片我的方法我的发现我的表现自评
互评学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。师生共同归纳,得出结论:三角形内角和等于180°(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)四、分层练习,巩固创新。①课件出示:师:这个三角形是什么三角形?知道几个内角的度数?生:直角三角形,知道一个角是30°,还有一个角是。∠A=90°-30°=60°。师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。学生做完后反馈讲评时让学生说说自己的方法。生1:用三角形内角的和(180°)减去再减去90°,算出∠A是60°。∠A=180°-30°-90°=60°。生2:先用30°加上90°得120°再用180°减去也可得∠A=60°。②学生完成完成P29的第一题。引导学生按照前面的方法独立完成,教师巡视,集体订正。③猜一猜三角形的另外两个角可能各是多少度。同桌同学互相说一说。(答案不唯一)④小组操作探究活动。让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。方法
四边形内角和用量角器量出每个内角的度数,并相加。把四边形四个角剪下来,拼在一起。把四边形分为两个三角形。填表后让学生想一想、互相说一说,四边形内角和是多少度?(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)《三形内角》教设计3一、教目标1.知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。2.能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。3.情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。二、教过程(一)创设情境,导入新课1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?(学生畅所欲言。)2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)
(二)自主探究,发现规律1、认识什么是三角形的内角和。师:你知道什么是三角形的内角和吗?通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。2、探究三角形内角和的特点。①让学生想一想、说一说怎样才能知道三角形的内角和?学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的.方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行)②小组合作。通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。引导学生推测出三角形的内角和可能都是。3、验证推测。让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是,也就是说三角形的三个角能不能拼成一个平角。(小组合作验证,教师参与其中。)4、全班交流,共同发现规律。当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。学生交流、师生共同总结出三角形的内角和等于。教师同时板书(三角形内角和等于180°。)5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是做系统的整理。)(三)巩固练习,拓展应用根据发现的三角形的新知识来解决问题。
1、完成“试一试”让学生独立完成后,集体交流。2、游戏:选度数,组三角形。请选出三个角的度数来组成一个三角形。150°10°15°18°20°32°35°50°52°54°56°58°130°70°72°75°60°学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。3、“想想做做”第1题生独立完成,集体订正,并说说解题方法。4、“想想做做”第2题提问:为什么两个三角形拼成一个三角形后,内角和还是度?5、“想想做做”第3题生动手折折看,填空。提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?6、“想想做做”第5题生独立完成,说说不同的解题方法。7、“想想做做”第6题学生说说自己的想法。8、思考题
教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导出四边形的内角和公式吗?(四)课堂总结本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。三教后反思:“三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。2、已知三角形两个角的度数,会求出第三个角的度数。本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。(一)创设情景,激发兴趣俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。(二)给学生空间,让他们自主探究“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北恩施学院《大数据导论》2022-2023学年第一学期期末试卷
- 2024拟签订合同模板
- 2024合同模板桩基工程专业分包合同范本
- 常见护理职业暴露及预防措施
- 湖北大学知行学院《新闻编辑》2022-2023学年第一学期期末试卷
- 湖北大学知行学院《食品原料学》2022-2023学年第一学期期末试卷
- 《离散优化数学建模》课件
- 2024汽车买卖合同版样书
- 2024个人与个人房屋买卖合同
- 2024合法的工厂承包合同样本
- 国际航班保障流程
- 英文版肺功能检查课件(PPT 50页)
- 《有机合成》说播课课件(全国高中化学优质课大赛获奖案例)
- 高中地理经纬网PPT通用课件
- 城市景观生态
- 五年级英语上册第六单元(新版pep)完美版(课堂PPT)
- 2022年修理厂改革实施方案范文
- 败血症PPT优质课件
- 铁路建设项目工程质量管理办法
- 架空输电线路检修规范
- 【课件】第六单元第十二节外国影视音乐课件-2021-2022学年高中音乐人音版(2019)必修音乐鉴赏
评论
0/150
提交评论