下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市代县第五中学2023年高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(
)A. B. C. D.参考答案:B【分析】首先由诱导公式可得sin160°=sin20°,再由两角和的余弦公式即可求值.【详解】cos20°cos10°–sin160°sin10°=cos20°cos10°–sin20°sin10°=cos30°.故选B.【点睛】本题考查了诱导公式和两角和的余弦公式,直接运用公式即可得到选项,属于较易题.2.某几何体的三视图如图所示,则它的体积为(
)A. B. C.15 D.参考答案:A【分析】由三视图还原几何体,得到几何体为正方体中放置一个倒立的圆锥,根据正方体和圆锥的体积公式求几何体的体积即可.【详解】由题意可知该几何体是正方体中放置一个倒立的圆锥,那么可知其底面半径为1,高度为2,那么其体积,选A【点睛】本题考查由三视图还原几何体及几何体的体积公式,属于基础题.3.若集合则集合B不可能是A.
B.C.
D.参考答案:B4.已知是定义在(0,3)上的函数,的图象如图所示,那么不等式的解集是(
)A.(0,1)∪(2,3) B.(1,)∪(,3)C.(0,1)∪(,3) D.(0,1)∪(1,3)
参考答案:C5.已知直线和直线,它们的交点坐标是(
)ks5uA.(0,1)
B.(1,0)
C.(-1,0)
D.(-2,-1)参考答案:C略6.有一个容量为200的样本,样本数据分组为,,,,,其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间内的频数为()A.48
B.60C.64D.72参考答案:B7.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的正弦值为()A.
B.
C.
D.参考答案:B8.(5分)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为() A. 0 B. 1 C. 2 D. 3参考答案:C考点: 函数的零点;对数函数的单调性与特殊点.专题: 函数的性质及应用.分析: 先求出函数的定义域,再把函数转化为对应的方程,在坐标系中画出两个函数y1=|x﹣2|,y2=lnx(x>0)的图象求出方程的根的个数,即为函数零点的个数.解答: 解:由题意,函数f(x)的定义域为(0,+∞);由函数零点的定义,f(x)在(0,+∞)内的零点即是方程|x﹣2|﹣lnx=0的根.令y1=|x﹣2|,y2=lnx(x>0),在一个坐标系中画出两个函数的图象:由图得,两个函数图象有两个交点,故方程有两个根,即对应函数有两个零点.故选C.点评: 本题考查了函数零点、对应方程的根和函数图象之间的关系,通过转化和作图求出函数零点的个数.9.已知函数f(x)=2ax2+4(a﹣3)x+5在区间(﹣∞,3)上是减函数,则a的取值范围是()A. B. C. D.参考答案:A【考点】二次函数的性质.【分析】首先对a分类讨论,a=0与a≠0两种情况;当a≠0,需要结合一元二次函数开口与对称轴分析;【解答】解:当a=0时,f(x)=﹣12x+5为一次函数,k<0说明f(x)在(﹣∞,3)上是减函数,满足题意;当a>0时,f(x)为一元二次函数,开口朝上,要使得f(x)在(﹣∞,3)上是减函数,需满足:?0<a≤当a<0时,f(x)为一元二次函数,开口朝下,要使得f(x)在(﹣∞,3)上是减函数是不可能存在的,故舍去.综上,a的取值范围为:[0,]故选:A10.已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是()A. B.C. D.参考答案:C【考点】根的存在性及根的个数判断;函数的零点与方程根的关系.【分析】要使关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且只有6个不同实数根,转化为t2+at+b=0必有两个根t1、t2,分类讨论求解.【解答】解:依题意f(x)在(﹣∞,﹣2)和(0,2)上递增,在(﹣2,0)和(2,+∞)上递减,当x=±2时,函数取得极大值;当x=0时,取得极小值0.要使关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且只有6个不同实数根,设t=f(x),则则有两种情况符合题意:(1),且,此时﹣a=t1+t2,则;(2)t1∈(0,1],,此时同理可得,综上可得a的范围是.故选答案C.二、填空题:本大题共7小题,每小题4分,共28分11.若且,则
。参考答案:12.若直线与平行,则与之间的距离为
▲
.参考答案:13.函数的定义域是_____________.参考答案:14.(5分)已知函数f(x)=,若g(x)=f(x)﹣k有两个零点,则实数k的取值范围是
.参考答案:(,1)考点: 函数的零点与方程根的关系.专题: 计算题;函数的性质及应用.分析: 化简确定函数f(x)的单调性与值域,并将函数g(x)的零点个数转化为函数交点的个数.【题文】(5分)判断下列说法:①已知用二分法求方程3x+3x﹣8=0在x∈(1,2)内的近似解过程中得:f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间(1.25,1.5)②y=tanx在它的定义域内是增函数.③函数y=的最小正周期为π④函数f(x)=是奇函数⑤已知=(x,2x),=(﹣3x,2),若∠BAC是钝角,则x的取值范围是x<0或x>其中说法正确的是
.【答案】①③【解析】考点: 命题的真假判断与应用.专题: 计算题;阅读型;函数的性质及应用;三角函数的图像与性质.分析: 由零点存在定理,即可判断①;由y=tanx在(kπ﹣,kπ+)(k∈Z)递增,即可判断②;由二倍角的正切公式,及正切函数的周期,即可判断③;判断定义域是否关于原点对称,由于x=,f(x)=1,但x=﹣,1+sinx+cosx=0,f(x)无意义.则定义域不关于原点对称,即可判断④;运用向量的夹角为钝角的等价条件为数量积小于0,且不共线,解不等式即可判断⑤.解答: 对于①,由零点存在定理可得,第一次由于f(1)f(1.5)<0,则位于区间(1,1.5),第二次由于f(1.25)f(1.5)<0,则位于(1.25,1.5),则①正确;对于②,y=tanx在(kπ﹣,kπ+)(k∈Z)递增,则②错误;对于③,函数y==tan2x,则函数的最小正周期为π,则③正确;对于④,函数f(x)=,由于x=,f(x)=1,但x=﹣,1+sinx+cosx=0,f(x)无意义.则定义域不关于原点对称,则为非奇非偶函数.则④错误;对于⑤,由于=(x,2x),=(﹣3x,2),若∠BAC是钝角,则?<0,且,不共线,则﹣3x2+4x<0,且2x≠﹣6x2,解得x>或x<0且x≠﹣,则⑤错误.综上可得,①③正确.故答案为:①③.点评: 本题考查函数的零点、函数的奇偶性和周期性、单调性的判断,考查平面向量的夹角为钝角的条件,考查运算能力,属于基础题和易错题.15.下列说法:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件次品;②做100次抛硬币的试验,有51次出现正面.因此出现正面的概率是0.51;③随机事件A的概率是频率值,频率是概率的近似值;④随机事件A的概率趋近于0,即P(A)→0,则A是不可能事件;⑤抛掷骰子100次,得点数是1的结果是18次,则出现1点的频率是;⑥随机事件的频率就是这个事件发生的概率;其中正确的有____________________________________参考答案:略16.若是锐角,且,则的值是
.参考答案:略17.函数的最小正周期为________.参考答案:
略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数的部分图象如图所示.(1)求f(x)的解析式;(2)将图象上所有点向左平行移动个单位长度,得到图象,求函数在R上的单调递增区间.参考答案:(1)(2)(1)由图象可得,根据函数的周期可得,将点点的坐标代入解析式可得,从而可得解析式.(2)由(1)可得,先求出函数的单调递增区间,再与区间取交集可得所求的单调区间.试题解析:(1)由图象可知,周期,∴
,∴,又点在函数的图象上,∴,∴,∴,又,∴,∴
.(2)由(1)知,因此.由,,故函数在上的单调递增区间为19.(本小题满分12分)已知函数(Ⅰ)判断函数的单调性,并利用函数单调性定义进行证明;(Ⅱ)求函数的最大值和最小值.
参考答案:解:(Ⅰ)设任取且
………………3分.
即
在[3,5]上为增函数
………………6分.(Ⅱ)由(Ⅰ)知在[3,5]上单调递增,所以
……………12分.
20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(I)若,求实数m的值;(II)若,求△ABC面积的最大值.参考答案:解:(1)由已知得,所以∵因为,由余弦定理得.所以(II)由(I),得因为由,得故21.(16分)已知函数f(x)=x++(x>0),数列数列{an}满足:a1=1,an+1=f(an),(n∈N*),Sn=a12+a22+…+an2,Tn=++…+.(1)求证:f(x)+=2(x+);(2)求Sn+Tn;(3)在数列{Sn+Tn}中是否存在不同的三项,使得此三项能成为某一三角形的三条边长?若能,请求出这三项;若不能请说明理由.参考答案:22.已知向量,函数的最小值为.(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肺炎教学课件
- 痔疮的治疗及护理
- 急性腰扭伤康复护理
- 小班健康活动谁做得对
- 合同模板对公账号
- 定制产品生产与销售代理合同(二零二四年度)
- 设备机械采购合同
- 国旗课件教学
- 工程转让协议书范本
- 合伙协议电子版人合伙开店协议书合同模板
- 智能治理:提高政府决策的准确性和效率
- 2024年滴眼剂市场份额分析:全球滴眼剂市场销售额达到了4.89亿美元
- 学术规范与论文写作智慧树知到答案2024年浙江工业大学
- 2024年典型事故案例警示教育手册15例
- 软件工程实验报告_学生成绩管理系统
- 九年义务教育全日制小学音乐教学器材配备目录
- MSDS(10-100048)聚脂烤漆
- 船舶风险辩识、评估及管控须知
- 减资专项审计报告
- 投标流程及管理制度
- 章质谱法剖析PPT课件
评论
0/150
提交评论