![关于电子鼻新技术的外文文献解读_第1页](http://file4.renrendoc.com/view/5627061843b6b520fd477d703ef06e1e/5627061843b6b520fd477d703ef06e1e1.gif)
![关于电子鼻新技术的外文文献解读_第2页](http://file4.renrendoc.com/view/5627061843b6b520fd477d703ef06e1e/5627061843b6b520fd477d703ef06e1e2.gif)
![关于电子鼻新技术的外文文献解读_第3页](http://file4.renrendoc.com/view/5627061843b6b520fd477d703ef06e1e/5627061843b6b520fd477d703ef06e1e3.gif)
![关于电子鼻新技术的外文文献解读_第4页](http://file4.renrendoc.com/view/5627061843b6b520fd477d703ef06e1e/5627061843b6b520fd477d703ef06e1e4.gif)
![关于电子鼻新技术的外文文献解读_第5页](http://file4.renrendoc.com/view/5627061843b6b520fd477d703ef06e1e/5627061843b6b520fd477d703ef06e1e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Anovelelectronicnoseforsimultaneousquantitative
determinationofconcentrationsandodorintensityanalysisofbenzene,tolueneandethylbenzenemixturesShenJiang,JieminLiu,*DiFang,LuchunYanandChuandongWuReporter:2015.12.05September2015Volume5number96
IntroductionTheE-nosesystermVOCsGassensorarraySignalpretreatment(converter)patternrecognitionsystemresultconvertelectricalsignalstoresponsevaluesAsthemostsignificantcomponentofanartificialolfactionsystem,it'scomposedofmetaloxidesensors,CatalyticcombustiontypeandelectrochemicaltypesensorsPCA,SVM,PLSweremostusedforqualitativeanalysisofmultipleVOCs;ICA,SVDweremostappliedinquantitativeanalysisofasinglegas;ANNswerethemostcommonmethodforodoridentificationanddeterminationofodorintensityLOREMpatternrecognitonsystemBPneuralnetwork1.SensorarrayforE-nose2.E-nosesystemsetup3.Databasemeasurementmethod1.Selectionandcharacterizationofthesensorarray2.Concentrationdetermination3.OdorintensitydeterminationMaterialsandMethodsSensorarrayforE-nose:
workinggases:benzene,tolueneandethylbenzenewithapurity>99.9%(J&KChemicalTechnology,China)GC-FIDanalysiscondition:gaschromatography(GC-2014,Shimadzu,Japan)withaflameionizationdetectorandaRtx-5capillarycolumn(30m×0.25mmID,0.5μmfilmthickness).Acylindricalglasscontainer(volumeof17.3L)withahole(diameterof4cm)initslidworkedasthegasvesselbecomposedofgassensors,atemperatuer(25±0.5℃)sensorahumiditysensor(45-50%).selectsuitablesensors0.4μlworkingsolutioninjectinE-nose20mg/m3gasselectthesensorscanresponseinatleastonesolutiontargetstestthestabilityofthesensorarrayevaporatesensorarray20groupssinglegasestestrespectively.5-200mg/m3,intervalwas10mg/m3determinateconcentrationE-nosedeterminationtrainingdatabase(BPNs)testdata(intestdatabase)210groupsincluding60single,45binary105ternary.5-200mg/m380groupsincluding24single,27binary29ternary.5-200mg/m3testmodicateoptimiseGC-FIDdeterminatethesamesamples'concentrationcomparativeanalysisofGC-FLD'sandE-nose'sresults.thebestparametersoftheneuralnetworkwereascertainedandtheircodeswerewrittenintothefinalsoftwaresystem.pridictionofodorintensitytheodorsensorymethodtheodorintensityrelativeconcentrationsweresameasthetestdataeachcompoundtestedwasrespectivelyinjectedintoanolfactory-bag(3Lvolumeandfullofcleanair),whenallthecompoundshadcompletelyevaporated,anodorsamplewaspreparedbytransferringacertainquantityofthegasfromthepreviousolfactory-bagtoanewbagbyaninjector.Then6sniffingpanelistsevaluatedthetestinggasaccordingtoOIRSselecttherelativepredicationmodelsandconfirmthecontantsthen,predicationmodelswereemployedtopredicttheodorintensityandtheresultswerecomparedwiththesniffedvalues,thentheoptimummodelsweredetermined.RESULTSPART1:fig.2showsthatsuitablesensorsareMC119,MQ6,TGS2610,2M008andWSP2620.sothese5sensorsareselectedtocompriseinasensorarray.wecanfindAllRSDvalueswerelessthan7%,whichshowthattheexperimenthadgoodprecision.PART2
TheresultsshowthattheE-nosesystemcoulddeterminerespectiveconcentrationsofaromatichydrocarbonmixturessimultaneouslyandithadahighaccuracyrelativetoGC-FID.theBPneuralnetworkused'logsig'and'purelin'astransferfunctionsand'trainlm'
asthetrainingfunctionandwascomposedof210groupsoftrainingdata,a5dimensioninputlayeranda3dimensionoutputlayer,6hiddenlayersand20neuronsineverylayer.PART:3
Weber-FecherlawSothesethreemodelswereusedtopredicttheodorintensity.ThetotalAREwas5.31%,thePearsoncorrelationcoefficientwas0.947andsignificanceofpaired-sampleT-testwas0.175.Discussion(1)ComparedwithpreviousE-noses,thetestingtimeforonetestwaslessthantenminutes,whichhastheadvantageoffastdetermination.(2)TheconcentrationsweremeasuredbyaBPneuralnetworkwhiletheodorintensitywasmeasuredbyamodelprediction.therelativeerrorsofthechemicalconcentrationsandodorintensitywere9.71%and5.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生非物质遗产创业项目
- 训练退出申请书
- 大学生创业贷款项目及材料
- 小学四年级数学三位数除以两位数单元检测口算题
- 三年级数学因数中间或末尾有零的乘法综合考核练习题大全附答案
- Unit 2 语法填空同步练习(含解析)-七年级英语下册(沪教版2024)
- 专科教育解析
- 语法掌握之道
- 音乐鉴赏之道
- 艺术历史探秘
- 【QC成果】提高地下室抗浮锚杆一次验收合格率
- 中建精装修施工工艺工法标准(做法详细值得收藏)
- 篆刻学ppt精品课件
- 中厚板轧制规程
- 贵州煤炭资源有偿使用意见
- 智慧教育 云平台建设方案
- 模具试模通知单
- 灯泡贯流式机组基本知识培训ppt课件
- 人参无公害标准化生产操作规程
- 人教版三年级下册体育与健康教案(全册教学设计)
- 产品结构设计(课堂PPT)
评论
0/150
提交评论