




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Anovelelectronicnoseforsimultaneousquantitative
determinationofconcentrationsandodorintensityanalysisofbenzene,tolueneandethylbenzenemixturesShenJiang,JieminLiu,*DiFang,LuchunYanandChuandongWuReporter:2015.12.05September2015Volume5number96
IntroductionTheE-nosesystermVOCsGassensorarraySignalpretreatment(converter)patternrecognitionsystemresultconvertelectricalsignalstoresponsevaluesAsthemostsignificantcomponentofanartificialolfactionsystem,it'scomposedofmetaloxidesensors,CatalyticcombustiontypeandelectrochemicaltypesensorsPCA,SVM,PLSweremostusedforqualitativeanalysisofmultipleVOCs;ICA,SVDweremostappliedinquantitativeanalysisofasinglegas;ANNswerethemostcommonmethodforodoridentificationanddeterminationofodorintensityLOREMpatternrecognitonsystemBPneuralnetwork1.SensorarrayforE-nose2.E-nosesystemsetup3.Databasemeasurementmethod1.Selectionandcharacterizationofthesensorarray2.Concentrationdetermination3.OdorintensitydeterminationMaterialsandMethodsSensorarrayforE-nose:
workinggases:benzene,tolueneandethylbenzenewithapurity>99.9%(J&KChemicalTechnology,China)GC-FIDanalysiscondition:gaschromatography(GC-2014,Shimadzu,Japan)withaflameionizationdetectorandaRtx-5capillarycolumn(30m×0.25mmID,0.5μmfilmthickness).Acylindricalglasscontainer(volumeof17.3L)withahole(diameterof4cm)initslidworkedasthegasvesselbecomposedofgassensors,atemperatuer(25±0.5℃)sensorahumiditysensor(45-50%).selectsuitablesensors0.4μlworkingsolutioninjectinE-nose20mg/m3gasselectthesensorscanresponseinatleastonesolutiontargetstestthestabilityofthesensorarrayevaporatesensorarray20groupssinglegasestestrespectively.5-200mg/m3,intervalwas10mg/m3determinateconcentrationE-nosedeterminationtrainingdatabase(BPNs)testdata(intestdatabase)210groupsincluding60single,45binary105ternary.5-200mg/m380groupsincluding24single,27binary29ternary.5-200mg/m3testmodicateoptimiseGC-FIDdeterminatethesamesamples'concentrationcomparativeanalysisofGC-FLD'sandE-nose'sresults.thebestparametersoftheneuralnetworkwereascertainedandtheircodeswerewrittenintothefinalsoftwaresystem.pridictionofodorintensitytheodorsensorymethodtheodorintensityrelativeconcentrationsweresameasthetestdataeachcompoundtestedwasrespectivelyinjectedintoanolfactory-bag(3Lvolumeandfullofcleanair),whenallthecompoundshadcompletelyevaporated,anodorsamplewaspreparedbytransferringacertainquantityofthegasfromthepreviousolfactory-bagtoanewbagbyaninjector.Then6sniffingpanelistsevaluatedthetestinggasaccordingtoOIRSselecttherelativepredicationmodelsandconfirmthecontantsthen,predicationmodelswereemployedtopredicttheodorintensityandtheresultswerecomparedwiththesniffedvalues,thentheoptimummodelsweredetermined.RESULTSPART1:fig.2showsthatsuitablesensorsareMC119,MQ6,TGS2610,2M008andWSP2620.sothese5sensorsareselectedtocompriseinasensorarray.wecanfindAllRSDvalueswerelessthan7%,whichshowthattheexperimenthadgoodprecision.PART2
TheresultsshowthattheE-nosesystemcoulddeterminerespectiveconcentrationsofaromatichydrocarbonmixturessimultaneouslyandithadahighaccuracyrelativetoGC-FID.theBPneuralnetworkused'logsig'and'purelin'astransferfunctionsand'trainlm'
asthetrainingfunctionandwascomposedof210groupsoftrainingdata,a5dimensioninputlayeranda3dimensionoutputlayer,6hiddenlayersand20neuronsineverylayer.PART:3
Weber-FecherlawSothesethreemodelswereusedtopredicttheodorintensity.ThetotalAREwas5.31%,thePearsoncorrelationcoefficientwas0.947andsignificanceofpaired-sampleT-testwas0.175.Discussion(1)ComparedwithpreviousE-noses,thetestingtimeforonetestwaslessthantenminutes,whichhastheadvantageoffastdetermination.(2)TheconcentrationsweremeasuredbyaBPneuralnetworkwhiletheodorintensitywasmeasuredbyamodelprediction.therelativeerrorsofthechemicalconcentrationsandodorintensitywere9.71%and5.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025网络设备采购合同模板
- 2025年水利管理及技术咨询服务项目建议书
- 2025合作伙伴签约仪式活动合同补充协议
- 2025四川省委托拍卖合同
- 2025年智能采购系统技术合同协议书
- 2025共同担保借款合同书
- 2025陕西劳动合同样本
- 2025混凝土浇筑劳务合同范本
- 《企业员工安全培训》课件
- 2025年恶唑禾草灵项目合作计划书
- 《小儿静脉穿刺》课件
- DB11-T 212-2024 园林绿化工程施工及验收规范
- 托盘贸易合作合同范例
- 劳动节安全教育家长会
- 品类运营管理
- 用工单位与劳务派遣公司合同
- 我的家乡浙江衢州
- 国家开放大学国开电大《儿童心理学》形考任务+大作业答案
- 股骨下端骨折的临床特征
- 学前儿童卫生与保健-期末大作业:案例分析-国开-参考资料
- 学校食堂蔬菜配送合同范本
评论
0/150
提交评论