八年级一元一次不等式(教师讲义带答案)资料讲解_第1页
八年级一元一次不等式(教师讲义带答案)资料讲解_第2页
八年级一元一次不等式(教师讲义带答案)资料讲解_第3页
八年级一元一次不等式(教师讲义带答案)资料讲解_第4页
八年级一元一次不等式(教师讲义带答案)资料讲解_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流第四章一元一次不等式 (组)考点一、不等式的概念 (3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。4、求不等式的解集的过程,叫做解不等式。5、用数轴表示不等式的方法考点二、不等式基本性质 (3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以 0,那么不等号改为等号所以在题目中, 要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为 0,否则不等式不成立;考点三、一元一次不等式 (6--8分)1、一元一次不等式的概念 :一般地,不等式中只含有一个未知数,未知数的次数是 1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。2、解一元一次不等式的一般步骤: (1)去分母( 2)去括号( 3)移项( 4)合并同类项( 5)将 x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。3、求不等式组的解集的过程,叫做解不等式组。4、当任何数 x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等

号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。7、不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。经典例题透析类型一:解一元一次不等式组(D②,并把它的解集在数轴上表示出来。fix—2(D②,并把它的解集在数轴上表示出来。O 同一工i1、解不等式组13思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。2解析:解不等式①,得x>-3;解不等式②,得XVI。2所以不等式组的解集为一 百WXV1在数轴上表示不等式①②的解集如图。在数轴上表示不等式①②的解集如图。总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。有等号画实心圆点,无等号画空心圆圈。举一反三:飞1-2<3工十4①\二+苫 尸科 ②【变式1】解不等式组:[ 3解析:解不等式①,得:A<3解不等式②,得:'''二在数轴上表示这两个不等式的解集为:学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流-2 3・•・原不等式组的解集为: 一二•二丁::二TOC\o"1-5"\h\z「3工十4〉。 ©-2x-l<3 ②【变式2】解不等式组:一"3m软+4③思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个 .(3)注意在数轴表示解集时“空心点”与“实心点”的区别4x>——解法一:解不等式①,得: *解不等式②,得:;《二解不等式③,得:五三:在数轴上表示这三个不等式的解集为:匚一W L234--<x<1・•・原不等式组的解集为: 3解法二:解不等式②,得:上<2解不等式③,得:五三:由五与五E1得:/£1一,-1<^1再与 3求公共解集得: -■Ix-Kx22x-^>3x+3【变式3【变式3】解不等式组:学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流解析:解不等式①得:x>—2解不等式②得:xv—7・•.不等式组的解集为无解所以不等式组的解集为2<x<4o1【变式4】解不等式:—1V3 <5思路点拨:(1)把连写不等式转化为不等式组求解; (2)根据不等式的性质,直接求出连写不等式的解集。解法1:原不等式可化为下面的不等式组解不等式①,得x>—1,解不等式②,得1【变式4】解不等式:—1V3 <5思路点拨:(1)把连写不等式转化为不等式组求解; (2)根据不等式的性质,直接求出连写不等式的解集。解法1:原不等式可化为下面的不等式组解不等式①,得x>—1,解不等式②,得xW8所以不等式组的解集为一1vxW8。即原不等式的解集为一1vxW82z—1解法2:-K3 <5,-3<2x-1<15,-2<2x<16,—1<x<8。所以原不等式的解集为一1vxw8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组-2—iM7—―1©-2 上 的整数解。思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。5解析:解不等式①,得x>2;解不等式②,得x<4o在数轴上表示不等式①②的解集 (如图)所以它的整数解为3,4。类型二、含参数的一元一次不等式组p;<3ff-22、若不等式组上力-5无解,求a的取值范围.由思路点拨:由两个不等式组成的不等式组无解只有一种情况,即“大大小小”,也就是说如果 x比一个较大的数大,而比一个较小的数小,则这样的数 x不存在.解析:依题意:2a-5>3a-2,解得a<-3总结升华:特别地,当2a-5与3a-2相等时,原不等式组也无解,请注意体会,以后做此类型的题目不要忽略对它们相等时的考虑.举一反三:Jr+1【变式1】若不等式组lx>2m-1无解,则脸的取值范围是什么?解析:要使不等式组无解,故必须附+ 禅—1,从而得花之2.(r+4r, >-+13 2 工f口 的解集为Km2,则“的取值范围是什么?i+4x >一解析:由3 2+1可解出走《2,而由工十口匕口可解出黑々一0,而不等式组的解集为五<2,故2,即H一二.总结升华:上面两个例题给出不等式组的解集,反求不等式组中所含字母的取值范围,故要求较高 .解这类题目的\<2关键是对四种基本不等式组的解集的意义要深刻理解,如变式 2,最后归结为对不等式组【工解集的确定,这就要求熟悉“同小取小”的解集确定方法,当然也可借助数轴求解。

-(2r-T)%工-1【变式3】不等式组〔工一比*° 的解集为xv2,试求k的取值范围加f>》一1①解析:卜姓二0②,由①得xv2,由②得xvk,•••不等式组的解集为xv2,2wk.即k>2.x-附NU:【变式4】已知关于尤的不等式组[3-2工>1的整数解共有5个,求脸的取值范围。解析:•.•不等式组工一.之。的解为:工上陛不等式组5—2云>\的解为:"2由于原不等式组有解,,解集为在此解集内包含5在此解集内包含5个整数,则这5个整数依次是L0、2-3••.m必须满足一…三—二工一心2 ①【变式5】若不等式组〔191 ②的解集为一ivxvl,则(a+b)2008=h解析:由①知x>a+2,由②知xv2,ba+2=—1,上=1,a=-3,b=2,.•-a+b=-1,(a+b)2008=(—1)2008=1。类型三、建立不等式或不等式组解决实际问题若9190▼3、某校在一次外出郊游中,把学生编为 9个组,若每组比预定的人数多 1人,则学生总数超过若9190每组比预定的人数少1人,则学生总数不到190人,求预定每组学生的人数。 国思路点拨:运用不等式解应用题的方法,找出题目中的不等关系,列不等式组,本题中的两个不等关系是:①个小组中每组比预定的人数多 1人,学生总数超过200人;②9个小组中每组比预定的人数少 1人,学生总数不到人。9(t+1J>200 ①解析:设预定每组学生有x人,根据题意,得口②A>-"9,解这个不等式组,得9,所以不等式组的解集是解这个不等式组,得其中符合题意的整数解只有一个 x=22。答:预定每组学生的人数为 22人。总结升华:列不等式(组)解应用题,首先将题目中的不等关系用不等式表示出来,当求得未知数的值后,要检验,是检验所求值是否是原不等式或不等式组的解,二是检验所求得的值是否与实际意义相符。举一反三:【变式1】某饮料厂为了开发新产品,用AB两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:饮料每千克含量甲乙A(单位:千克)0.502B(单位:千克)0.30.4(1)假设甲种饮料需配制x千克,请你写出满足题意的不等式组,并求出其解集。(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为 3元,这两种饮料的成本总额为 y元,请用含有x的式子来表示y。并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最小?解析:(1)0.5x+0.2(50-x)W19①0.3x+0.4(50-x) <17.2②由①得x<30,由②得x>28.•-28<x<30(2)y=4x+3(50-x),即y=x+150因为x越小,则y越小,所以当x=28时,甲、乙两种饮料的成本总额最少。【变式2】某园林的门票每张10元,一次使用。考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票人使用一年)。年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再购买门票; B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需要再购买门票,每次3元。(1)如果你只选择一种购买门票的方式,并且你计划在一年中用 80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。(2)求一年中进入该园林至少多少次时,购买 A类年票才比较合算。思路点拨:“合算”是指进园次数多而花钱少,或是花相同的钱进园的次数最多,显然是通过计算进行代数式比较和建立不等式(组)关系。解:(1)不可能选A类年票,若选B类年票,则为10次;若选C类年票,则为13次;若不购买年票,则为8次所以计划用80元花在该园林的门票上时,选择购买 C类年票的方法进入园林的次数最多,为13次。(2)设至少超过x次时,购买A类年票才比较合算,则60+2x>120解得x>3040+3x>120解得x>26学习资料学习资料学习资料学习资料因x因x取整数x=4,当x=4时,租金为当x=5时,租金为所以租5辆42座,【变式5】解方程10x>120解得x>12..x>30所以,一年中进入该园林至少超过 30次时,购买A类年票才比较合算。【变式3】若干名学生,若干间宿舍,若每间住 4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满,问学生有多少人?宿舍有几间?解析:设宿舍共有x间。r公>4筑+2。8(x-l)<4x+20解得:5<x<7,「x为整数..x=6学生人数4X6+20=44(人)答:学生44人,宿舍6间。【变式4】某学校计划组织385名师生租车旅游,现知道出租车公司有 42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元,(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车 8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案。解析:(1)385+42=9.2单独租用42座客车需10辆,租金为320X10=3200(元)385+60=6.4单独租用60座客车需7辆,租金为460X7=3220(元)(2)设租用42座客车x辆,则60座客车需(8—x)辆42x-h60[8-x)>385 3 5〔加况十45吸一上3200解得:$尸盗5320X4+460X(8—4)=3120(元)320X5+460X(8—5)=2980(元)3辆60座最省钱。。由绝对值的几何意义知,该方程表示求在数轴上与1和一2的距离之和为5的点对应的x的值。在数轴上,1和一2的距离为3,满足方程的x对应点在1的右边或—2的左边,若x对应点在1的右边,由图(17)可以看出x=2;同理,若x对应点在一2的左边,可得x=-3,故原方程的解是x=2或x=—3各种学习资料,仅供学习与交流学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流参考阅读材料,解答下列问题:(1)方程的解为(2)解不等式>9;学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流3若<a对任意的x都成立,求a3若解:(1)1或2)7,易知3与在3的右边时,如图(2),当在图(2),的左边时,如易知学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流原不等式的解为大于或等于大于或等于3)原问题转化为最大值.当 时,当 , 随的增大而减小,时,7.学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流学习资料学习资料各种学习资料,仅供学习与交流各种学习资料,仅供学习与交流12分一次不等式(组)中参数取值范围求解技巧(提高部分)已知一次不等式(组)的解集(特解),求其中参数的取值范围,以及解含方程与不等式的混合组中参变量(参数)取值范围,近年在各地中考卷中都有出现。求解这类问题综合性强,灵活性大,蕴含着不少的技能技巧。下面举例介绍常用的五种技巧方法。一、化简不等式(组),比较列式求解例1.若不等式;(久-k)之度—2k的解集为度工一。,求k值。解:化简不等式,得xw5k,比较已知解集若工一^,得5k=k=-1。fx+844区例2.(2014年山东威海市中考题)若不等式组 ( 的解集是x>3,则m的取值范围是()。>mA3 B、m=3 C、m<3 D、m<3{x>3-、,比较已知解集x>3,得3>m,••・选D。x>m(2k-a,(1例3.(2014年重庆市中考题)若不等式组 《八N二的解集是-1<x<1,那么(a+1)(b-1)的值等于2K>2b+3•••它的解集是-1<x<1,+3=Ta412b+3<又<也为其解集,比较得 +1. =*2 =1I2・・.(a+1)(b-1)=-6.

评述:当一次不等式(组)化简后未知数系数不含参数(字母数)时,比较已知解集列不等式(组)或列方程组来确定参数范围是一种常用的基本技巧。二、结合性质、对照求解例4.(2014年江苏盐城市中考题)已知关于x的不等式(1-a)x>2的解集为哀<二一,则a的取值范围是()。Aa>0曰a>1Ca<0 D>a<1解:对照已知解集,结合不等式性质 3得:1-a<0,即a>1,选Bo(x>3例5.(2014年湖北荆州市中考题)若不等式组 f 的解集是x>a,则a的取值范围是( )。[笈:日Aa<3日Aa<3日a=3Ca>3 Dka>3解:根确定不等式组解集法则:“大大取较大”,对照已知解集x>a,得a>3,.•.选Do变式(2014年重庆市初数赛题)关于x的不等式(2a-b)x>a-2b的解集是xC—,则关于x的不等式ax+b<0的解集为。三、利用性质,分类求解例6.已知不等式;耳-2|-5)-13g(才|龙-2|+2)的解集是x<1,求a的取值范围。解:由解集x<工得x-2<0,脱去绝对值号,得2-[(-z+2)-5]-1一国+2)+2]=3一力黑>2a+7。TOC\o"1-5"\h\z12软十7 /1当a-1>0时,得解集耳> 与已知解集k<-矛盾;a-1 2当a-1=0时,化为0•x>0无解;/2乱+7 J当a-1<0时,得解集x< 与解集等价。a-1 22/7a.T2/7a.T仅+2)x均不在-1WxW4范围内,求a的取值范围。例7.x均不在-1WxW4范围内,求a的取值范围。I2 3[x>5a-6,解:化简不等式组,得,《外,「它有解,,5a-6<3a=>a<3;利用解集性质,题意转化为:其每一解在 x<-1或x>4内。于是分类求解,当x<-1时,得为47na£一;,,1当x>4时,得4<5a-6=a>2。故3工-§或2<a<3为所求。

评述:(1)未知数系数含参数的一次不等式,当不明确未知数系数正负情况下,须得分正、零、负讨论求解;对解集不在awx<b范围内的不等式(组),也可分x<a或x>b求解。(2)要细心体验所列不等式中是否能取等号,必要时画数轴表示解集分析等号。四、借助数轴,分析求解例8.例8.(2014年山东聊城中考题)已知关于x的不等式组x-a>0的整数解共5个,则a的取值范围是3- >-1(k>a解:化简不等式组,得f有解,将其表在数轴上,<2如图1,其整数解5个必为x=1,0,-1,-2,-3 。由图1得:-4<aW-3。 -4-3-2-10\2困1变式:(1)若上不等式组有非负整数解,求a的范围。(2)若上不等式组无整数解,求 a的范围。(答:(1)-1<aW0;(2)a>1),2y+543(y+1)例9.关于y的不等式组U-ty7 的整数解是-3,-2,-1,0,1。求参数t的范围。、2 36解:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论