下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市耿镇中学2022-2023学年高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若log2x+log2y=3,则2x+y的最小值是
(A)
(B)8
(C)10
(D)12参考答案:B2.已知命题“若函数在(0,+∞)上是增函数,则”,则下列结论正确的是A.否命题是“若函数在(0,+∞)上是减函数,则”,是真命题B.逆命题是“若,则函数在(0,+∞)上是增函数”,是假命题C.逆否命题是“若,则函数在(0,+∞)上是减函数”,是真命题D.逆否命题是“若,则函数在(0,+∞)上不是增函数”,是真命题参考答案:D【分析】本题首先可以根据原命题“若函数在(0,+∞)上是增函数,则”写出原命题的逆命题、否命题以及逆否命题,然后判断出四种命题的真假,即可得出结果。【详解】原命题“若函数在(0,+∞)上是增函数,则”,是真命题;逆命题为“若,则函数在(0,+∞)上是增函数”,是真命题;否命题为“若函数在(0,+∞)上不是增函数,则”,是真命题;逆否命题为“若,则函数在(0,+∞)上不是增函数”,是真命题,综上所述,故选D。【点睛】本题考查命题的相关性质,主要考查原命题、逆命题、否命题以及逆否命题的相关性质以及联系,考查推理能力,是简单题。3.A. B. C. D.参考答案:A4.已知函数的极大值点和极小值点都在区间内,则实数的取值范围是(
)A.
B.
C.
D.参考答案:D略5.给定两个命题p,q,若p是的必要不充分条件,则是q的
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)刘不充分也不必要条件参考答案:A6.函数的最小值是(
) A、1 B、2 C、3 D、4参考答案:B略7.如图所示,正方体ABCD-A′B′C′D’中,M是AB的中点,则sin〈,〉的值为()A. B.C.
D.参考答案:B略8.设a,b∈R,则“a+b>2”是“a>1且b>1”的()A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既非充分又非必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】利用不等式的性质,结合充分条件和必要条件的定义进行判断.【解答】解:若a>1且b>1时,a+b>2成立.若a=0,b=3,满足a+b>1,但a>1且b>1不成立,∴“a+b>2”是“a>1且b>1”的必要不充分条件.故选:B【点评】本题主要考查充分条件和必要条件的应用,以及不等式的性质的判断,比较基础.9.已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是
(
)A.
B.
C.
D.参考答案:C10.设为抛物线上的动弦,且,则弦的中点到轴的最小距离为A. 2 B. C. 1 D. 参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.根据如图所示的算法流程图,可知输出的结果i为________.参考答案:712.执行如下的程序框图,则输出的n=
.参考答案:7略13.在三角形ABC中,角A,B,C所对应的长分别为a,b,c,若a=2,B=,c=2,则b=
参考答案:214.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形直角顶点P的轨迹方程是
参考答案:15.不等式的解是
▲
.参考答案:不等式,解之可得.即答案为.
16.将y=sin(2x+)的图象向右平移φ(0<φ<π)个单位得到函数y=2sinx(sinx﹣cosx)﹣1的图象,则φ=.参考答案:【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,诱导公式,得出结论.【解答】解:将y=sin(2x+)的图象向右平移φ(0<φ<π)个单位得到y=sin(2x﹣2φ+)的图象,根据题意,得到函数y=2sinx(sinx﹣cosx)﹣1=2sin2x﹣sin2x﹣1=﹣sin2x﹣cos2x=﹣sin(2x+)=sin(2x+)的图象,∴﹣2φ+=+2kπ,k∈Z,即φ=﹣kπ﹣,∴φ=,故答案为:.17.已知集合A={x|x﹣2<3},B={x|2x﹣3<3x﹣2},则A∩B=
.参考答案:{x|﹣1<x<5}【考点】交集及其运算.【分析】分别求出集合A和B,由此能求出A∩B.【解答】解:∵集合A={x|x﹣2<3}={x|x<5},B={x|2x﹣3<3x﹣2}={x|x>﹣1},∴A∩B={x|﹣1<x<5}.故答案为:{x|﹣1<x<5}.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知:,:,若是的必要不充分条件,求实数m的取值范围。参考答案:解:由p:可得
………(3分)由q:可得……(6分)因为是q的必要不充分条件,则p是q的充分不必要条件。………………(8分)
因为p是q的充分不必要条件,所以,……………(10分)所以
………………………(12分)19.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若PA=PD,求证:AD⊥平面PQB;(2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,且PM=3MC,求三棱锥P﹣QBM的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(1)由PA=PD,得到PQ⊥AD,又底面ABCD为菱形,∠BAD=60°,得BQ⊥AD,利用线面垂直的判定定理得到AD⊥平面PQB利用面面垂直的判定定理得到平面PQB⊥平面PAD;(2)由平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,得PQ⊥平面ABCD,BC?平面ABCD,得PQ⊥BC,得BC⊥平面PQB,即得到高,利用椎体体积公式求出;【解答】证明:(1)∵PA=PD,∴PQ⊥AD,又∵底面ABCD为菱形,∠BAD=60°,∴BQ⊥AD,PQ∩BQ=Q,∴AD⊥平面PQB解:(2)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,∴PQ⊥平面ABCD,BC?平面ABCD,∴PQ⊥BC,又BC⊥BQ,QB∩QP=Q,∴BC⊥平面PQB,又PM=3MC,∴VP﹣QBM=VM﹣PQB=.20.已知函数.(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)若函数与图象在上有两个不同的交点,求实数m的取值范围.参考答案:(Ⅰ)函数的增区间为,减区间;(Ⅱ).【分析】(Ⅰ)将代入函数解析式,求出该函数的定义域和导数,然后分别解不等式和可得出函数的增区间和减区间;(Ⅱ)令得出,问题转化为:当直线与函数在区间上的图象有两个交点时,求实数的取值范围,并利用导数分析函数在区间上的单调性、极值和端点函数值,利用数形结合思想可得出实数的取值范围,即可求出实数的取值范围.【详解】(Ⅰ)当时,,定义域为,且.令,即,解得;令,即,解得.因此,函数的增区间为,减区间;(Ⅱ)由已知得:在有两个不相等的实数根.令,,由得.当时,,此时,函数为减函数;当时,,此时,函数为增函数.所以,函数在处取得极小值,又,且,当时,直线与函数在区间上的图象有两个交点,,因此,实数的取值范围是.【点睛】本题考查利用导数求函数的单调区间,同时也考查了利用导数研究函数的零点个数问题,在求解含单参数的函数零点个数问题时,可充分利用参变量分离法转化为参数直线与定函数的交点个数问题,利用数形结合思想求解,考查化归与转化思想,属于中等题.21.若和是定义在同一区间上的两个函数,对任意,都有,则称和是“亲密函数”.设.(Ⅰ)若,求和是“亲密函数”的概率;(Ⅱ)若,求和是“亲密函数”的概率.参考答案:(Ⅰ);(Ⅱ)【分析】(Ⅰ)根据题意,分别写出基本事件总数,再写出满足条件基本事件个数,基本事件个数之比即是所求概率;(Ⅱ)根据题意,点所在区域是长1,宽为1的正方形区域,要使,都有,只需,进而由面积利用几何概型求解即可.【详解】(Ⅰ)由,,可构成如下:;;;;;共6种情况;由于对任意,都有,则称和是“亲密函数”;易知,,;共4种情况,属于“亲密函数”所以和是“亲密函数”的概率为;(Ⅱ)设事件A表示“和是亲密函数”,因为由,所以点所在区域是长1,宽为1的正方形区域.要使,都有,只需,且;即且,在直角坐标系内作出所表示的区域如下:(图中阴影部分)由得;由得,所以阴影部分面积为,因此和是“亲密函数”的概率为.【点睛】本题主要考查古典概型,以及几何概型,熟记概率计算公式即可,属于常考题型.22.(1)已知函数.求不等式的解集;(2)已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度大数据中心建设与运营服务合同规范3篇
- 二手房交易合同模板2024一
- 2024物业租赁合同中的违约金计算方式
- 二零二五版船舶环保技术改造项目股份投资合同3篇
- 关于2025年度环保设施运营维护的详细合同
- 专用面粉生产与供应合同2024
- 2024淘宝天猫京东电商客服团队激励考核合同3篇
- 2025年校园物业管理与服务保障合同书6篇
- 2025年度船舶建造与船员培训服务合同3篇
- 2024版公证处借款合同范文
- 2024高考复习必背英语词汇3500单词
- 消防控制室值班服务人员培训方案
- 《贵州旅游介绍》课件2
- 2024年中职单招(护理)专业综合知识考试题库(含答案)
- 无人机应用平台实施方案
- 挪用公款还款协议书范本
- 事业单位工作人员年度考核登记表(医生个人总结)
- 盾构隧道施工数字化与智能化系统集成
- 【企业盈利能力探析文献综述2400字】
- 2019年医养结合项目商业计划书
- 2023年店铺工程主管年终业务工作总结
评论
0/150
提交评论