下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市代县枣林镇枣林中学高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数y=x2-2x,x∈[0,3]的值域为(
)A.[0,3]
B.[1,3]
C.[-1,0]
D.[-1,3]参考答案:D∵,∴函数开口向上,对称轴为,∴函数在上单调递减,单调递增,∴当时,函数值最小,最小值为;当时,函数值最大,最大值为3,即函数的值域为,故选D.
2.设全集,则
A. B. C. D. 参考答案:B3.一个几何体的三视图如图所示,则该几何体的体积为
A、
B、
C、
D、参考答案:C4.当时,则有(
)A.B.
C.
D.参考答案:B5.在已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(1)求f(x)的解析式;(2)当时,求的值域.参考答案:(1)(2)[-1,2]试题分析:根据正弦型函数图象特点,先分析出函数的振幅和周期,最低点为,得,周期,则,又函数图象过,代入得,故,又,从而确定,得到,再求其单调增区间.(2)分析,结合正弦函数图象,可知当,即时,取得最大值;当,即时,取得最小值,故的值域为.试题解析:(1)依题意,由最低点为,得,又周期,∴.由点在图象上,得,∴,,.∵,∴,∴.由,,得.∴函数的单调增区间是.(2),∴.当,即时,取得最大值;当,即时,取得最小值,故的值域为.点睛:本题考查了三角函数的图象和性质,重点对求函数解析式,单调性,最值进行考查,属于中档题.解决正弦型函数解析式的问题,一定要熟练掌握求函数周期,半周期的方法及特殊值的应用,特别是求函数的初相时,要注意特殊点的应用及初相的条件,求函数值域要结合正弦函数图象,不要只求两个端点的函数值.6.设f(x)=2x+3,g(x+2)=f(x),则g(x)=()A.2x+1
B.2x-1
C.2x-3
D.2x+7参考答案:B7.对于函数,下列选项中正确的是(
)A.在上是递增的
B.的图像关于原点对称
C.的最小正周期为
D.的最大值为2参考答案:B8.在△ABC中,三条边分别为a,b,c,若,则三角形的形状(
)A.锐角三角形 B.钝角三角形C.直角三角形 D.不能确定参考答案:A【分析】根据余弦定理可求得,可知为锐角;根据三角形大边对大角的特点可知为三角形最大的内角,从而得到三角形为锐角三角形.【详解】由余弦定理可得:且
又,则
均为锐角,即为锐角三角形本题正确选项:【点睛】本题考查解三角形中三角形形状的判断,关键是能够利用余弦定理首先确定最大角所处的范围,涉及到三角形大边对大角的性质的应用.9.对任意的满足,且,则等于(
)A
1
B
62
C
64
D
83参考答案:D10.计算sin105°=()A. B. C. D.参考答案:D【考点】诱导公式一.【分析】利用105°=90°+15°,15°=45°﹣30°化简三角函数使之成为特殊角的三角函数,然后求之.【解答】解:sin105°=sin(90°+15°)=cos15°=cos(45°﹣30°)=(cos45°cos30°+sin45°sin30°)=.故选D.二、填空题:本大题共7小题,每小题4分,共28分11.函数的值域是,则函数的值域是______________.参考答案:略12.如图所示的正四棱台的上底面边长为2,下底面边长为8,高为3,则它的侧棱长为.参考答案:6【考点】棱台的结构特征.【分析】连结O′A′,OA,过A′作A′E⊥OA,交OA于点E,分别求出AE,A′E,由此能求出它的侧棱长.【解答】解:连结O′A′,OA,过A′作A′E⊥OA,交OA于点E,∵正四棱台的上底面边长为2,下底面边长为8,高为3,∴AE=﹣=3,A′E=3,∴它的侧棱长AA′==6.故答案为:6.13.若点在幂函数的图象上,则
.参考答案:14.对于函数f(x)=lnx的定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)?f(x2);②f(x1?x2)=f(x1)+f(x2);③>0上述结论中正确结论的序号是.参考答案:②③【考点】对数的运算性质.【分析】利用对数的基本运算性质进行检验:①f(x1+x2)=ln(x1+x2),f(x1)f(x2)=lnx1?lnx2,则f(x1+x2)≠f(x1)?f(x2);②f(x1?x2)=lnx1x2=lnx1+lnx2=f(x1)+f(x2);③f(x)=lnx在(0,+∞)单调递增,可得>0.【解答】解:①∵f(x)=lnx,(x>0)∴f(x1+x2)=ln(x1+x2),f(x1)f(x2)=lnx1?lnx2,∴f(x1+x2)≠f(x1)f(x2),命题错误;②∵f(x1?x2)=lg(x1x2)=lnx1+lnx2,f(x1)+f(x2)=lnx1+lnx2,∴f(x1x2)=f(x1)+f(x2),命题正确;③f(x)=lnx在(0,+∞)上单调递增,则对任意的0<x1<x2,都有f(x1)<f(x2),即>0,∴命题正确;故答案为:②③.15.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。参考答案:略16.已知,则+=
参考答案:117.函数的值域是_________
参考答案:_三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数,且的图象的一个对称中心到最近的对称轴的距离为,(Ⅰ)求的值(Ⅱ)求在区间上的最大值和最小值参考答案:(II)由(I)知.当时,所以因此.故在区间上的最大值和最小值分别为.
略19.据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径、圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.(1)试计算出图案中球与圆柱的体积比;(2)假设球半径.试计算出图案中圆锥的体积和表面积.参考答案:(1);(2)圆锥体积,表面积【分析】(1)由球的半径可知圆柱底面半径和高,代入球和圆柱的体积公式求得体积,作比得到结果;(2)由球的半径可得圆锥底面半径和高,从而可求解出圆锥母线长,代入圆锥体积和表面积公式可求得结果.【详解】(1)设球的半径为,则圆柱底面半径为,高为球的体积;圆柱的体积球与圆柱的体积比为:(2)由题意可知:圆锥底面半径为,高为圆锥的母线长:圆锥体积:圆锥表面积:【点睛】本题考查空间几何体的表面积和体积求解问题,考查学生对于体积和表面积公式的掌握,属于基础题.20.铁路运输托运行李,从甲地到乙地,规定每张客票托运费计算方法为:行李质量不超过50kg,按0.25元/kg计算;超过50kg而不超过100kg时,其超过部分按0.35元/kg计算,超过100kg时,其超过部分按0.45元/kg计算.设行李质量为xkg,托运费用为y元.(Ⅰ)写出函数y=f(x)的解析式;(Ⅱ)若行李质量为56kg,托运费用为多少?参考答案:【考点】分段函数的应用.【专题】应用题;函数的性质及应用.【分析】(Ⅰ)对x讨论,若0<x≤50,若50<x≤100,若x>100,求得f(x)的解析式;(Ⅱ)对自变量的范围考虑,选择第二段,代入计算即可得到托运费.【解答】解:(Ⅰ)(1)若0<x≤50,则y=0.25x;
(2)若50<x≤100,则y=12.5+0.35(x﹣50)=0.35x﹣5;
(3),则y=30+0.45(x﹣100)=0.45x﹣15.综上可得,y=;(Ⅱ)因为50kg<56kg≤100kg,所以y=12.5+6×0.35=14.6(元).则托运费为14.6元.【点评】本题考查分段函数及运用,主要考查分段函数的解析式的求法和运用,属于基础题.21.近年来,随着科学技术迅猛发展,国内有实力的企业纷纷进行海外布局,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外设多个分支机构需要国内公司外派大量80后、90后中青年员工.该企业为了解这两个年龄层员工对是否愿意接受外派工作的态度随机调查了100位员工,得到数据如下表:
愿意接受外派人数不愿意接受外派人数合计80后20204090后402060合计6040100
(Ⅰ)根据调查的数据,判断能否在犯错误的概率不超过0.1的前提下认为“是否愿意接受外派与年龄层有关”,并说明理由;(Ⅱ)该公司选派12人参观驻海外分支机构的交流体验活动,在参与调查的80后员工中用分层抽样方法抽出6名,组成80后组,在参与调查的90后员工中,也用分层抽样方法抽出6名,组成90后组①求这12人中,80后组90后组愿意接受外派的人数各有多少?②为方便交流,在80后组、90后组中各选出3人进行交流,记在80后组中选到愿意接受外派的人数为x,在9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度大数据中心建设与运营服务合同规范3篇
- 二手房交易合同模板2024一
- 2024物业租赁合同中的违约金计算方式
- 二零二五版船舶环保技术改造项目股份投资合同3篇
- 关于2025年度环保设施运营维护的详细合同
- 专用面粉生产与供应合同2024
- 2024淘宝天猫京东电商客服团队激励考核合同3篇
- 2025年校园物业管理与服务保障合同书6篇
- 2025年度船舶建造与船员培训服务合同3篇
- 2024版公证处借款合同范文
- 2024高考复习必背英语词汇3500单词
- 消防控制室值班服务人员培训方案
- 《贵州旅游介绍》课件2
- 2024年中职单招(护理)专业综合知识考试题库(含答案)
- 无人机应用平台实施方案
- 挪用公款还款协议书范本
- 事业单位工作人员年度考核登记表(医生个人总结)
- 盾构隧道施工数字化与智能化系统集成
- 【企业盈利能力探析文献综述2400字】
- 2019年医养结合项目商业计划书
- 2023年店铺工程主管年终业务工作总结
评论
0/150
提交评论