下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市上磨坊中学2019-2020学年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,则值为
(
)A.
B.
C.
D.参考答案:A试题分析:考点:同角间三角函数关系2.已知全集(
)
A.
B.
C.
D.参考答案:B3.方程的零点所在区间是(
).
A.(0,2)
B.(1,2)
C.(2,3)
D.(3,4)参考答案:C4.函数是()A.周期为的奇函数
B.周期为的偶函数C.周期为的奇函数 D.周期为的偶函数参考答案:D5.10名工人生产同一零件,生产的件数是设其平均数为,中位数为,众数为,则有
(
)A.
B.
C.
D.参考答案:C,所以。6.下列问题中是古典概型的是()A.种下一粒杨树种子,求其能长成大树的概率B.掷一颗质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一数,求这个数大于1.5的概率D.同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率参考答案:D【考点】古典概型及其概率计算公式.【专题】应用题;整体思想;定义法;概率与统计.【分析】根据古典概型的特征:有限性和等可能性进行排除即可.【解答】解:A、B两项中的基本事件的发生不是等可能的;C项中基本事件的个数是无限多个;D项中基本事件的发生是等可能的,且是有限个.故选:D.【点评】本题考查古典概型的判断,是基础题,解题时要认真审题,注意古典概型的两个特征:有限性和等可能性的合理运用.7.函数与
的图像可能是(
)
A
B
C
D参考答案:C略8.某学校高一年级共有480名学生,为了调查高一学生的数学成绩,采用系统抽样的方法抽取30名学生作为调查对象.将480名学生随机从1~480编号,按编号顺序平均分成30组(1~16号,17~32号,…,465~480号),若从第1组中用抽签法确定的号码为5,则第8组中被抽中学生的号码是()A.25 B.133 C.117 D.88参考答案:C根据系统抽样样本编号的确定方法进行求解,因为第1组抽出的号码为5,分组间隔为16,所以第8组应抽出的号码是(8-1)×16+5=117。选C。点睛:系统抽样则主要考查分组数和由第一组中抽取的样本推算其他各组应抽取的样本,即等距离的特性,解题的关键是的关键是掌握系统抽样的原理及步骤。9.在△ABC中,若,则B=A. B. C. D.或参考答案:A由正弦定理有,所以,,又因为,故,选A.点睛:本题主要考查了用正弦定理解三角形,属于易错题.本题运用大边对大角定理是解题的关键.10.某四棱锥的三视图如图所示,该四棱锥的表面积是
(
)A.32
B.16+
C.48
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.若,则______.参考答案:【分析】利用二倍角的正弦函数公式和同角三角函数基本关系式化简,即可求解,得到答案.【详解】由题意,因为,则.故答案:.【点睛】本题主要考查了二倍角的正弦函数公式,同角三角函数基本关系式在三角函数化简求值中的综合应用,其中解答中熟练应用正弦的倍角公式和三角函数的基本关系式是解答的关键,着重考查计算能力和转化思想,属于基础题.12.几位同学在研究函数时给出了下面几个结论:①函数f(x)的值域为(-1,1);②若,则一定有;③f(x)在(0,+∞)是增函数;④若规定,且对任意正整数n都有:,则对任意恒成立.上述结论中正确结论的序号为__________.参考答案:①②③④【分析】考虑时对应函数的值域、单调性、奇偶性即可判断出①②③是否正确,利用归纳推理的思想判断是否正确.【详解】的定义域为,当时且是单调递增的,当时且是单调递增的,当时,又因为,所以是奇函数,由此可判断出①②③正确,因为,,,由归纳推理可得:,所以④正确.故答案为:①②③④.【点睛】本题考查函数的值域、单调性、奇偶性的综合运用,难度较难.(1)分段函数的值域可以采用分段求解,最后再取各段值域的并集;(2)分段函数在判断单调性时,除了要考虑每一段函数单调性,还需要考虑到在分段点处各段函数的函数值的大小关系.13.已知,则f(x)=
,的单调递增区间为
.参考答案:
当,则,所以,即;,定义域为,且对称轴为,所以内函数在单调递增,单调递减,又外函数在单调递减,根据复合函数“同增异减”,原函数的单调增区间为。
14.数列…的前_____项和为最大?参考答案:10
略15.正方体ABCD-A1B1C1D1中,异面直线AB1与 CC1所成的角为
,异面直线AB1与CD1所成的角为
,异面直线AB1与A1D所成的角为
。参考答案:16.锐角△ABC的三边a,b,c和面积S满足条件,且角C既不是△ABC的最大角也不是△ABC的最小角,则实数k的取值范围是________.参考答案:【分析】根据余弦定理和面积公式可得,得,结合范围确定结果.【详解】,,又,,,锐角三角形不是最大角、也不是最小角,则,,,故荅案为.【点睛】本题主要考查余弦定理和三角形面积公式的应用,属于基础题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.17.若a+b=450,则(1+tana)(1+tanb)=______参考答案:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知三条直线l1:ax﹣y+a=0,l2:x+ay﹣a(a+1)=0,l3:(a+1)x﹣y+a+1=0,a>0.(1)证明:这三条直线共有三个不同的交点;(2)求这三条直线围成的三角形的面积的最大值.参考答案:【考点】IM:两条直线的交点坐标.【分析】(1)分别求出直线l1与l3的交点A、l1与l2的交点B和l2与l3的交点C,且判断三点的坐标各不相同即可;(2)根据题意画出图形,由AB⊥BC知点B在以AC为直径的半圆上,除A、C点外;由此求出△ABC的面积最大值.【解答】解:(1)证明:直线l1:ax﹣y+a=0恒过定点A(﹣1,0),直线l3:(a+1)x﹣y+a+1=0恒过定点A(﹣1,0),∴直线l1与l3交于点A;又直线l2:x+ay﹣a(a+1)=0不过定点A,且l1与l2垂直,必相交,设交点为B,则B(,);l2与l3相交,交点为C(0,a+1);∵a>0,∴三点A、B、C的坐标不相同,即这三条直线共有三个不同的交点;(2)根据题意,画出图形如图所示;AB⊥BC,∴点B在以AC为直径的半圆上,除A、C点外;则△ABC的面积最大值为S=?|AC|?|AC|=×(1+(a+1)2)=a2+a+.19.(14分)已知是定义在上的奇函数,且。若对任意都有。
(1)判断函数的单调性,并简要说明理由;(2)若,求实数的取值范围;(3)若不等式≤对所有和都恒成立,求实数的取值范围。参考答案:(1)设任意满足,由题意可得
,
∴在定义域上位增函数。………………4分
(2)由(1)知。
∴即的取值范围为。
……8分
20.在经济学中,函数的边际函数为,定义为,某公司每月最多生产100台报警系统装置。生产台的收入函数为(单位元),其成本函数为(单位元),利润的等于收入与成本之差.①求出利润函数及其边际利润函数;②求出的利润函数及其边际利润函数是否具有相同的最大值;③你认为本题中边际利润函数最大值的实际意义.参考答案:略21.如图,O是圆锥底面圆的圆心,圆锥的轴截面PAB为等腰直角三角形,C为底面圆周上一点.(Ⅰ)若弧BC的中点为D.求证:AC∥平面POD;(Ⅱ)如果△PAB面积是9,求此圆锥的表面积.参考答案:【考点】直线与平面平行的判定;棱柱、棱锥、棱台的侧面积和表面积.【分析】(Ⅰ)证法1:设BC∩OD=E,由已知可证AC∥OE,线线平行即可证明线面平行AC∥平面POD;证法2:由AB是底面圆的直径,可证AC⊥BC,利用OD⊥BC,可证AC∥OD,即可判定AC∥平面POD.(Ⅱ)设圆锥底面半径为r,高为h,母线长为l,由圆锥的轴截面PAB为等腰直角三角形,可求,利用三角形面积公式可求r,进而可求此圆锥的表面积.【解答】解:(Ⅰ)证法1:设BC∩OD=E,∵D是弧BC的中点,∴E是BC的中点,又∵O是AB的中点,∴AC∥OE,又∵AC?平面POD,OE?平面POD,∴AC∥平面POD.证法2:∵AB是底面圆的直径,∴AC⊥BC,∵弧BC的中点为D,∴OD⊥BC,又AC,OD共面,∴AC∥OD,又AC?平面POD,OD?平面POD,∴AC∥平面POD.(Ⅱ)解:设圆锥底面半径为r,高为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023劳动者就业协议书内容七篇
- 2023双方保密协议书七篇
- 协议书范本汽车
- 2023房子装修双方协议书七篇
- 新疆维吾尔自治区喀什地区疏勒县实验学校教育集团2023-2024学年七年级11月月考道德与法治试题(原卷版)-A4
- 2024秋新沪科版物理8年级上册教学课件 第6章 熟悉而陌生的力 第3节 来自地球的力
- 2023年药品包装机械项目融资计划书
- 2023年聚氨酯涂料项目融资计划书
- 烹饪原料知识习题+参考答案
- 黑龙江省佳木斯市富锦市2024届九年级上学期期末考试数学试卷(含答案)
- 人教版(2024)七年级上册数学第5章单元测试卷(含答案)
- 供应商开发计划表
- 强化QHSE体系加强石油企业安全管理的具体措施
- 第4章-长基线水声定位系统(LBL)
- 先张法预应力混凝土管桩基础技术规程
- 加工合同模板
- 高尔夫文化与礼仪慕课测验作业答案
- 中药治疗高血压的临床论文(共3篇)
- (完整版)认知功能成套测验操作手册
- 最新快递公司劳动合同模板
- [高一政史地]关于绍兴老地名的研究性学习结题报告
评论
0/150
提交评论