山西省太原市兴安第一中学高一数学理期末试题含解析_第1页
山西省太原市兴安第一中学高一数学理期末试题含解析_第2页
山西省太原市兴安第一中学高一数学理期末试题含解析_第3页
山西省太原市兴安第一中学高一数学理期末试题含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省太原市兴安第一中学高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.化简.参考答案:【考点】运用诱导公式化简求值.【分析】利用诱导公式即可化简求值得解.【解答】解:原式=.2.函数,()在一个周期内的图象如右图所示,此函数的解析式为(

)A.B.C.

D.

参考答案:A略3.圆上的点到直线的距离最大值是(

)A.

B.

C.

D.参考答案:C4.由下表可计算出变量x,y的线性回归方程为()x54321y21.5110.5A.=0.35x+0.15 B.=﹣0.35x+0.25C.=﹣0.35x+0.15 D.=0.35x+0.25参考答案:A【考点】线性回归方程.【专题】计算题;概率与统计.【分析】利用平均数公式求得平均数,代入公式求回归系数,可得回归直线方程.【解答】解:==3,==1.2,∴b==0.35,a=1.2﹣0.35×3=0.15,∴线性回归方程为y=0.35x+0.15.故选:A.【点评】本题考查了线性回归方程是求法,利用最小二乘法求回归系数时,计算要细心.5.已知在等差数列中,的等差中项为,的等差中项为,则数列的通项公式(

A.

B.-1

C.+1

D.-3参考答案:D略6.若函数,则等于

A.

B.

C.

D.

参考答案:B7.设集合U={1,2,3,4,5},A={1,2,5},则(

)A.{1,5} B.{3,4} C.}{3,5} D.{1,2,3,4,5}参考答案:B【分析】补集:【详解】因为,所以,选B.8.有下列4个命题:(1)“若,则互为相反数”的否命题(2)“若,则”的逆否命题(3)“若,则”的否命题(4)“若,则有实数根”的逆命题其中真命题的个数是()A.1

B.2

C.3

D.4参考答案:A9.已知集合A={x∈Z||x|<4},B={x|x﹣1≥0},则A∩B等于()A.(1,4) B.[1,4) C.{1,2,3} D.{2,3,4}参考答案:C【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:∵A={x∈Z||x|<4}={x∈Z|﹣4<x<4}={﹣3,﹣2,﹣1,0,1,2,3},B={x|x﹣1≥0}={x|x≥1},∴A∩B={1,2,3},故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.10.(5分)在圆x2+y2=4上,与直线4x+3y﹣12=0的距离最小的点的坐标是() A. () B. ( C. (﹣) D. 参考答案:A考点: 点到直线的距离公式;直线与圆的位置关系.分析: 在圆x2+y2=4上,与直线4x+3y﹣12=0的距离最小的点,必在过圆心与直线4x+3y﹣12=0垂直的直线上,求此线与圆的交点,根据图象可以判断坐标.解答: 圆的圆心(0,0),过圆心与直线4x+3y﹣12=0垂直的直线方程:3x﹣4y=0,它与x2+y2=4的交点坐标是(),又圆与直线4x+3y﹣12=0的距离最小,所以所求的点的坐标().图中P点为所求;故选A.点评: 本题考查点到直线的距离公式,直线与圆的位置关系,直线的截距等知识,是中档题.二、填空题:本大题共7小题,每小题4分,共28分11.函数,其中的值域为

▲。参考答案:12.若xlog23=1,则3x+9x的值为

.参考答案:6【考点】对数的运算性质.【分析】xlog23=1,可得x=log32.再利用对数恒等式与指数幂的运算性质即可得出.【解答】解:∵xlog23=1,∴x=log32.∴3x==2,9x=(3x)2=4.则3x+9x=2+4=6.故答案为:6.13.已知向量,,若,则

.参考答案:14.若,且(),则实数的值为____________.参考答案:λ=

15.请用“<”号将以下三个数按从小到大的顺序连接起

.参考答案:16.已知,,,…,均为正实数,类比以上等式,可推测的值,则

.参考答案:4117.在△ABC中,已知点D在BC上,AD丄AC,,则BD的长为

。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,a是实常数,(1)当a=1时,写出函数f(x)的值域;(2)判断并证明f(x)的单调性;(3)若f(x)是奇函数,不等式f(f(x))+f(m)<0有解,求m的取值范围.参考答案:【考点】奇偶性与单调性的综合.【分析】(1)当a=1时,利用指数函数的性质,即可求出函数f(x)的值域;(2)利用单调性的定义,判断并证明f(x)的单调性;(3)若f(x)是奇函数,求出a,不等式f(f(x))+f(m)<0有解,fmax(x)>﹣m有解,即可求m的取值范围.【解答】解:(1)当a=1时,,定义域为R,3x+1∈(1,+∞),∴f(x)∈(1,3),即函数的值域为(1,3).(2)函数f(x)在R上单调递减;下证明.证明:设任意x1,x2∈R,且x1<x2.=>0,所以函数f(x)在R上单调递减.(3)因为f(x)是奇函数,所以f(﹣x)=﹣f(x)恒成立,即对x∈R恒成立,化简整理得,即a=﹣1.因为f(f(x))+f(m)<0有解,且函数为奇函数,所以f(f(x))<﹣f(m)=f(﹣m)有解,又因为函数f(x)在R上单调递减,所以f(x)>﹣m有解,即fmax(x)>﹣m有解,又因为函数f(x)=﹣1的值域为(﹣1,1),所以﹣m<1,即m>﹣1.19.(本题满分10分)(1)设全集为,集合,集合,求。(2)参考答案:(1)解:

…………2分故

…………5分(2)解:原式=20.已知锐角△ABC的面积等于3,且AB=3,AC=4.(1)求sin(+A)的值;(2)求cos(A﹣B)的值.参考答案:【考点】余弦定理;正弦定理.【分析】(1)利用三角形的面积公式列出关系式,将AB,AC的值代入求出sinA的值,根据A为锐角,求出cosA的值,原式利用诱导公式化简后将cosA的值代入计算即可求出值;(2)利用余弦定理列出关系式,将AB,AC,以及cosA的值代入求出BC的长,再由AC,BC,sinA的值,利用正弦定理求出sinB的值,确定出cosB的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.【解答】解:(1)∵AB=3,AC=4,S△ABC=AB?AC?sinA=×3×4×sinA=3,∴sinA=,又△ABC是锐角三角形,∴cosA==,∴sin(+A)=cosA=;(2)∵AB=3,AC=4,cosA=,∴由余弦定理BC2=AB2+AC2﹣2AB?ACcosA=9+16﹣12=13,即BC=,由正弦定理=得:sinB==,又B为锐角,∴cosB==,则cos(A﹣B)=cosAcosB+sinAsinB=×+×=.21.(本小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论