高中物理鲁科版1第六章磁场对电流和运动电荷的作用 2023版第6章章末分层突破_第1页
高中物理鲁科版1第六章磁场对电流和运动电荷的作用 2023版第6章章末分层突破_第2页
高中物理鲁科版1第六章磁场对电流和运动电荷的作用 2023版第6章章末分层突破_第3页
高中物理鲁科版1第六章磁场对电流和运动电荷的作用 2023版第6章章末分层突破_第4页
高中物理鲁科版1第六章磁场对电流和运动电荷的作用 2023版第6章章末分层突破_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

章末分层突破[自我校对]①电流②ILB③运动④qvB⑤eq\f(mv,qB)⑥eq\f(2πm,qB)⑦eq\f(2πm,qB)⑧qvB=qE有关安培力问题的分析与计算安培力既可以使通电导体静止、运动或转动,又可以对通电导体做功,因此有关安培力问题分析与计算的基本思路和方法与力学问题一样,先取研究对象进行受力分析,判断通电导体的运动情况,然后根据题中条件由牛顿定律或动能定理等规律列式求解.具体求解应从以下几个方面着手分析:1.安培力的大小(1)当通电导体和磁场方向垂直时,F=ILB.(2)当通电导体和磁场方向平行时,F=0.(3)当通电导体和磁场方向的夹角为θ时,F=ILBsinθ.2.安培力的方向(1)安培力的方向由左手定则确定.(2)F安⊥B,同时F安⊥L,即F安垂直于B和L决定的平面,但L和B不一定垂直.3.安培力作用下导体的状态分析通电导体在安培力的作用下可能处于平衡状态,也可能处于运动状态.对导体进行正确的受力分析,是解决该类问题的关键.分析的一般步骤是:(1)明确研究对象,这里的研究对象一般是通电导体.(2)正确进行受力分析并画出导体的受力分析图,必要时画出侧视图、俯视图等.(3)根据受力分析确定通电导体所处的状态或运动过程.(4)运用平衡条件或动力学知识列式求解.如图6­1所示,电源电动势E=2V,内阻r=Ω,竖直导轨宽L=0.2m,导轨电阻不计.另有一质量m=0.1kg,电阻R=Ω的金属棒,它与导轨间的动摩擦因数μ=,靠在导轨的外面.为使金属棒不滑动,施加一与纸面夹角为30°且与导体棒垂直指向纸里的匀强磁场(设最大静摩擦力等于滑动摩擦力,g取10m/s2).求:图6­1(1)此磁场的方向;(2)磁感应强度B的取值范围.【导学号:34022037】【解析】(1)要使金属棒静止,安培力应斜向上指向纸里,画出由a→b的侧视图,并对棒ab受力分析如图所示.经分析知磁场的方向斜向下指向纸里.(2)如图甲所示,当ab棒有向下滑的趋势时,受静摩擦力向上为Ff,则:Fsin30°+Ff-mg=0F=B1ILFf=μFcos30°I=eq\f(E,R+r)联立四式并代入数值得B1=T.当ab棒有向上滑的趋势时,受静摩擦力向下为Ff′,如图乙所示,则:F′sin30°-Ff′-mg=0Ff′=μF′cos30°F′=B2ILI=eq\f(E,R+r)可解得B2=T.所以若保持金属棒静止不滑动,磁感应强度应满足T≤B≤T.【答案】(1)斜向下指向纸里(2)T≤B≤T1.必须先将立体图转换为平面图,然后对物体受力分析,先重力,再安培力,最后是弹力和摩擦力.2.注意:若存在静摩擦力,则可能有不同的方向,因而求解结果是一个范围.带电粒子在有界磁场中的运动1.几种常见情景(1)直线边界(进出磁场具有对称性,如图6­2所示)图6­2(2)平行边界(不同情况下从不同边界射出,存在临界条件,如图6­3所示)图6­3(3)圆形边界(沿径向射入必沿径向射出,如图6­3所示)图6­32.两类典型问题(1)临界问题:解决此类问题的关键是找准临界点,找临界点的方法是以题目中的“恰好”“最大”“至少”等词语为突破点,挖掘隐含条件,分析可能的情况,必要时画出几个不同半径的轨迹,这样就能顺利地找到临界条件.(2)多解问题:造成多解问题的常见原因有带电粒子电性的不确定、磁场方向的不确定、临界状态不唯一、运动的周期性等.解答这类问题的关键是认真分析物理过程,同时考虑问题要全面,不要漏解.3.注意的问题(1)抓住解决问题的基本思路,即找圆心、求半径、确定圆心角并利用其对称性,结合磁场边界,画出粒子在有界磁场中的轨迹.(2)带电粒子在有界磁场中的对称性或临界情景①带电粒子在一些有界磁场中的圆周运动具有对称性是指从某一边界射入又从同一边界射出时,粒子的速度方向与边界的夹角相等,或在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.②刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(3)当速度v一定时,弧长越长,轨道对应的圆心角越大,带电粒子在有界磁场中运动的时间越长.(多选)如图6­4所示,左右边界分别为PP′、QQ′的匀强磁场的宽度为d,磁感应强度大小为B,方向垂直纸面向里.一个质量为m、电荷量为q的微观粒子,沿图示方向以速度v0垂直射入磁场.欲使粒子不能从边界QQ′射出,粒子入射速度v0的最大值可能是()图6­4\f(Bqd,m) \f(2+\r(2)Bqd,m)\f(2-\r(2)Bqd,m) \f(\r(2)Bqd,2m)【解析】粒子射入磁场后做匀速圆周运动,由R=eq\f(mv0,qB)知,粒子的入射速度v0越大,R越大,当粒子的径迹和边界QQ′相切时,粒子刚好不从QQ′射出,此时其入射速度v0应为最大.若粒子带正电,其运动轨迹如图中的(a)所示(此时圆心为O点),容易看出R1sin45°+d=R1,将R1=eq\f(mv0,qB)代入上式得v0=eq\f(2+\r(2)Bqd,m),B项正确.若粒子带负电,其运动径迹如图(b)所示(此时圆心为O′点),容易看出R2+R2cos45°=d,将R2=eq\f(mv0,qB)代入上式得v0=eq\f(2-\r(2)Bqd,m),C项正确.(a)(b)【答案】BC空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直于横截面.一质量为m、电荷量为q(q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为()\f(\r(3)mv0,3qR) \f(mv0,qR)\f(\r(3)mv0,qR) \f(3mv0,qR)【解析】带电粒子在磁场中做匀速圆周运动,利用几何关系和洛伦兹力公式即可求解.如图所示,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,即qv0B=meq\f(v\o\al(2,0),r),据几何关系,粒子在磁场中的轨道半径r=Rtan60°=eq\r(3)R,解得B=eq\f(\r(3)mv0,3qR),选项A正确.【答案】A1.一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图6­5所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为()图6­5\f(ω,3B) \f(ω,2B)\f(ω,B) \f(2ω,B)【解析】如图所示,粒子在磁场中做匀速圆周运动,圆弧eq\o(\s\up12(︵),MP)所对应的圆心角由几何知识知为30°,则eq\f(π,2ω)=eq\f(2πm,qB)·eq\f(30°,360°),即eq\f(q,m)=eq\f(ω,3B),选项A正确.【答案】A2.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电直导线和磁场方向的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原来的一半【解析】通电直导线在匀强磁场中所受安培力的方向由左手定则判断,安培力的大小由F=BILsinθ计算.安培力的方向始终与电流方向和磁场方向垂直,选项A错误,选项B正确;由F=BILsinθ可知,安培力的大小与通电直导线和磁场方向的夹角有关,选项C错误;将直导线从中点折成直角时,因磁场与导线的夹角未知,则安培力的大小不能确定,选项D错误.【答案】B3.平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图6­6所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30°角.已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O的距离为()图6­6\f(mv,2qB) \f(\r(3)mv,qB)\f(2mv,qB) \f(4mv,qB)【解析】如图所示,粒子在磁场中运动的轨道半径为R=eq\f(mv,qB).设入射点为A,出射点为B,圆弧与ON的交点为P.由粒子运动的对称性及粒子的入射方向知,AB=R.由几何图形知,AP=eq\r(3)R,则AO=eq\r(3)AP=3R,所以OB=4R=eq\f(4mv,qB).故选项D正确.【答案】D4.如图6­7,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出).一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O.已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为()图6­7A.2 \r(2)C.1 \f(\r(2),2)【解析】带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律与圆周运动知识得出半径与速度之间的关系.当粒子穿过铝板时,动能损失,由此可求出穿过铝板前后的速度之比,即可得出磁感应强度大小之比.设带电粒子在P点时初速度为v1,从Q点穿过铝板后速度为v2,则Ek1=eq\f(1,2)mveq\o\al(2,1),Ek2=eq\f(1,2)mveq\o\al(2,2),由题意可知Ek1=2Ek2,即eq\f(1,2)mveq\o\al(2,1)=mveq\o\al(2,2),则eq\f(v1,v2)=eq\f(\r(2),1).由洛伦兹力提供向心力,即qvB=eq\f(mv2,R),得R=eq\f(mv,qB),由题意可知eq\f(R1,R2)=eq\f(2,1),所以eq\f(B1,B2)=eq\f(v1R2,v2R1)=eq\f(\r(2),2),故选项D正确.【答案】D5.如图6­8所示,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘.金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2Ω.已知开关断开时两弹簧的伸长量为0.5cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm.重力加速度大小取10m/s2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.图6­8【解析】依题意,开关闭合后,电流方向从b到a,由左手定则可知,金属棒所受的安培力方向竖直向下.开关断开时,两弹簧各自相对于其原长伸长了Δl1=0.5cm.由胡克定律和力的平衡条件得2kΔl1=mg ① 式中,m为金属棒的质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论