版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章复习检测题选择题1.已知等差数列中,公差,若,则该数列的前项和的最大值为().2.已知等比数列中,,,则前9项之和等于A.50B.70C.80D.903.设是公比为的等比数列,令,若数列有连续四项在集合中,则等于().A.B.C.D.4.列中,通项公式为,则的最大项是().A.B.C.D.5.差数列的公差,且,则当取得最大值时,等于().或6D.6.数列的公差,若是与的等比中项,则.7.是等差数列,,是等差数列的前项和,则使得达到最大值的是().8.数列中,,若数列的前项和为,则的值为().9.已知是非零数列的前项和,且,则等于().A.B.C.D.10.数列中,,且数列是等差数列,则.A.B.C.D.11.数列的前项和为,若,则当取最小值时的值为().或5或612.已知数列中,对任意都有,若该数列前63项和为4000,前125项和为1000,则该数列前2023项和为().填空题13.为零的等差数列中,成等比数列,则的前项和..14.设等差数列前项和,,则的值.15.等比数列中,前项和为48,前14项和为60,则前21项和为.解答题16.是等差数列,其前项的和为,则也是等差数列,类比以上性质,等比数列,则=__________,也是等比数列17.设是一个公差为的等差数列,它的前10项和且,,成等比数列,求公差的值和数列的通项公式.18.已知等差数列的前n项的和记为.如果.(1)求数列的通项公式;(2)求Sn的最小值及其相应的n的值。19.已知等差数列满足(1)求数列的通项公式;(2)设各项均为正数的等比数列的前n项和为Tn若求.20.已知数列满足,(1)求证:数列是等比数列;(2)设,求数列的前项和;(3)已知等差数列中:,,求数列的前项和。21.已知正项数列的前项和为,且对任意的正整数满足.求数列的通项公式;设,求数列的前项和.22.已知为数列的前项和,且,(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和;(Ⅲ)设,数列的前项和为,求证:任意,.第二章复习检测题答案选择题1.B解析:由题意知,又,,故当或9时,取得最大值45.解析:等比数列,,成成比数列,满足,所以,所以,三项和70,所以选B3.C解析:在集合中,其中或成等比数列,.4.B解析:由得的最大项是.5.C解析:由,即,.当或6时,取得最大值.故选C.6.B解析:,即,即.7.B解析:9,即,即.最大,,即,即,故选B.8.C解析:由得.,.即,即,故选C.9.B解析:,即,即,,即,,即,,.故选B.10.A解析:设数列,即,,故选A.11.C解析:由于,而,且,所以当取最小值时的值为4,故选C.12B解析:依题意得,即数列的项是以6为周期重复性的出现,且由于,依题意有.,,故选B.二、填空题13.解析:,即14.解析:,即,即.15.提示:48,60-48,,即48,12,,,即.16.三、解答题17.解:因为,,成等比数列,故,而是等差数列,有,,于是,即,化简得……5分由条件和,得到,由,代入上式得,……7分故,.18..解:(1)设公差为d,由题意,可得 ,解得,所以………………6分(2)由数列的通项公式可知,当时,,当时,,当时,。所以当n=9或n=10时,取得最小值为。…………1219.解:(I)设等差数列的公差为d。…………4分∴数列的通项公式 …………6分(II)设各项均为正数的等比数列的公比为由(I)知(舍)…………10分20.(1)证明:∴又∵∴为常数∴数列是首项为3,公比为3的等比数列。……(2)由(1)知,…………∴……设的前的和为,∴∴==∴∴(3)设等差数列的公差为,,∴∴21解:(1)由,代入得,将两边同时平方得,①①式中用代入得②①-②得,即,又因为为正数列,所以,所以数列是以1为首项,2为公差的等差数列,所以.(2)由,.22..解:(Ⅰ),..是以2为公比的等比数列----------------3分,..-----------------------4分(Ⅱ)当为偶数时,;------------------6分当为奇数时,.--------------7分综上,.-----------8分(Ⅲ).当时,eq\f(1,3)--------------------------------9分当时,-------------10分=综上可知:任意,.-----------12分.【备选题目】1.设是等差数列的前项和,,则的值为A.B.C.D.2.已知等比数列中,各项都是正数,且成等差数列,则A.B.C.D.3若两个等差数列和的前项和分别是和,已知,则 () (A)(B)(C)(D)4.数列{an}中,a1=1,an,an+1是方程x2-(2n+1)x+=0的两个根,则数列{bn}的前n项和Sn等于().A.B.C.D.5.已知数列的前项和为,数列的前项和为,则().6.若成等差数列,的等比数列,则的值()A.B.C.D.7.已知数列满足,则该数列的前20项的和为()A.B.C.D.8.各项均为正数的等比数列中,则.A.D.9.数列的前n项和为s=n2+2n-1,则a1+a3+a5+……+a25=()A.350B.351C.337D.33810.已知等比数列的前n项和为,且,则()A.54B.48C.32D.1611.已知Sk表示{an}的前K项和,Sn—Sn+1=an(n∈N+),则{an}一定是_______。A.等差数列B.等比数列C.常数列D.以上都不正确若成等比数列,则下列三个数:①②③,必成等比数列的个数为()A、3B、2C、1D、0二、填空题13.关于数列有下列四个判断:(1)若成等比数列,则也成等比数列;(2)若数列{}既是等差数列也是等比数列,则{}为常数列;(3)数列{}的前n项和为,且,则{}为等差或等比数列;(4)数列{}为等差数列,且公差不为零,则数列{}中不会有,其中正确判断的序号是______(注:把你认为正确判断的序号都填上)14.计算___________15.已知函数f(x)=a·bx的图象过点A(2,)、B(3,1),若记an=log2f(n)(n∈N*),Sn是数列{an}的前n项和,则Sn的最小值是.三、解答题16设数列满足求数列的通项公式;令,求数列的前n项和.17.已知正项等差数列的前项和为,若,且成等比数列.(Ⅰ)求的通项公式;(Ⅱ)记的前项和为,求.18.设二次方程有两根和,且满足试用表示;求证:是等比数列;当时,求数列的通项公式。19.已知数列是首项为1的正项数列,且,求它的通项公式.20.已知数列的前项和,满足,求数列的通项公式.21.设是由正数组成的等比数列,是其前项和.证明:.22.设等比数列的首项为,公比为,若其前10项中最大的项数为1024,求的值.23.已知数列的前项和为,求24.已知数列满足:,。数列的前n项和为,且。⑴求数列、的通项公式;⑵令数列满足,求其前n项和为25.设数列是一等差数列,数列的前项和为,若.求数列的通项公式;求数列的前项和.备用试题答案一、选择题1.答案:A解析:由题意得,又,,选A.2.答案:D解析:设等比数列的公比为,由成等差数列,得,即,解得,由题意可知,3.答案:D解析:.4.答案:D解析:∵an,an+1是方程x2-(2n+1)x+=0的两个根,∴an+an+1=2n+1,an·an+1=.∴bn=,又a1=1,∴a2=2,a3=3,…,an=n.∴Sn=b1+b2+…+bn=5.答案:C【解析】.当时,时成立,即.,,故选C.6.答案:B【解析】7.答案:C解:当为偶数时,为等比数列,偶数的和为当为奇数时,为等差数列,奇数项的和为所以所有项的和为,选C.8.答案:A解析:,.9.错解:选B错因:不理解该数列从第二项起向后成等差数列,要把第一项单考虑正确答案:A10.答案:A解:等比数列每5项的和成等比数列,是等比数列的第四项首项为2,公比为3,所以第4项为11.答案:D12.错解:A.错解分析:没有考虑公比和的情形,将①③也错认为是正确的.正解:C.二、填空题13.错解:(1)(3)。对于(1)a、b、c、d成等比数列。也成等比数列,这时错解.因为特列:时,成等比数列,但,,,即不成等比。对于(3)可证当时,为等差数列,时为等比数列。时既不是等差也不是等比数列,故(3)是错的.正解:(2)(4).14.【答案】【解析】.15.【答案】-3【解析】∵f(x)的图象过A,B点,∴f(x)=2x-3,∴an=log2f(n)=n-3,∵n≤3时,an≤0,n>3时,an>0,∴Sn的最小值为S2=S3=-3.三、解答题16.解:(Ⅰ)由已知,当n≥1时,。∴,分而所以数列{}的通项公式为(Ⅱ)由知①从而②①-②得,。即.∴17.解:(Ⅰ)∵,即,∴,所以,又∵,,成等比数列,∴,即,解得,或(舍去),∴,故;(Ⅱ),设,①则,②①②得,∴,18.解:(1)根据韦达定理得由得故.(2)因为所以所以数列是等比数列(3)当的首项为所以所以:.19.解:,..,,.适合上式,故.20.解:当时,有,即,则.令,则有.于是,这说明数列是等比数列.公比,首项,从而得,即.故有.易知是也满足,故.21.解:欲证,只需证,即,只需证.由已知数列公比,若,则,若,则,成立.22.解:的通项公式为.当时,为递增数列,故前10项中第10项最大,即.当时,为递减数列,前10项中第1项最大,即,与已知矛盾,此时无解.当时,为常数数列,此时各项均为1,显然与题设矛盾.综上可知.23.解:当时,;当时,,所以.24.解析:(1)由已知得数列为等差数列,首项为1,公差为1.所以其通项公式为(2分)因为,所以,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版办公室场地租赁与智能家居装修服务合同2篇
- 2024版技术开发合同详2篇
- 2024版DJ演出团队艺人聘用合同3篇
- 2024年度高端钢材定制加工合同文本3篇
- 2024版文化产业反担保抵押合同范本3篇
- 2025届四川省遂宁第二中学高考英语五模试卷含解析
- 浙江省湖州三县2025届高三第三次测评数学试卷含解析
- 云南省曲靖市一中2025届高考英语三模试卷含解析
- 广东省潮州市重点中学2025届高三第二次模拟考试英语试卷含解析
- 山东省邹平双语学校二区2025届高三第五次模拟考试数学试卷含解析
- 红船精神与时代价值-知到答案、智慧树答案
- 房票数字化管理系统需求
- 部编版四年级上册语文期末测试卷(附答案)
- 2024年中考作文十二大高频热点主题1-至爱亲情(素材)
- 奥的斯GECS配有 MESD 的 GCS扶梯控制软件扶梯服务器调试手册2015
- 医院消防安全宣教
- 遇见朗读者智慧树知到期末考试答案2024年
- 第10课时-小人物-大情怀-单元总结-七年级语文下册(部编版)
- 厂务动力系统培训课件
- 搬运装卸服务外包搬运装卸实施方案
- 30题解决方案工程师岗位常见面试问题含HR问题考察点及参考回答
评论
0/150
提交评论