




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§3.4协方差及相关系数一、协方差二、协方差矩阵三、相关系数四、条件数学期望五、条件期望的预测含义
对于二维随机变量,除了讨论X与Y的数学期望和方差以外,还需要讨论描述X与Y之间相互关系的数字特征,本节讨论这方面的数字特征。一、协方差E(X-EX)(Y-EY)=E(X-EX)E(Y-EY)又
E(X-EX)=0,E(Y-EY)=0所以
E(X-EX)(Y-EY)=0。
设(X,Y)为二维随机向量,EX,EY均存在,如果E{[X-E(X)][Y-E(Y)]}存在,则称其为随机变量X与Y的协方差,记为cov(X,Y),即1、定义cov(X,Y)=E{[X-E(X)][Y-E(Y)]}
可以证明,如果X,Y的方差存在,则协方差cov(X,Y)一定存在,且满足下列不等式5)
D(aX+bY)=2、协方差的性质6)若X与Y独立,则cov(X,Y)=0,D(X+Y)=DX+DY例3.22解:例3.23解:()
的联合密度函数为,设连续型随机向量YX()îí죣£=其它,0108yxxyyxg.,求)(),cov(YXDYX+
îí죣-=其它010)1(4)(2xxxxgXîí죣=其它0104)(3yyygYò+¥¥-=dxxxgEXX)(ò-=102)1(4dxxxx158=例3.23(续1)D(X+Y)ò+¥¥-=dyyygEYY)(ò=1024dyyy54=94=EXYò+¥¥-=dxxgxEXX)(22ò-=1022)1(4dxxxx31=ò+¥¥-=dyygyEYY)(22ò=10224dyyy32=104)(3££=yyygY
,10)1(4)(2££-=xxxxgX
,158=EX二、协方差矩阵都存在,且称矩阵:为n维随机变量(X1,X2,…,Xn)的协方差矩阵。若记X=(X1,X2,…,Xn),则X的协方差矩阵可记为DX。为随机变量X与Y的相关系数。相关系数是一个无量纲的量。三、相关系数称则称X与Y不相关;则称X与Y正相关;则称X与Y负相关。若对X与Y进行标准化变换二元正态分布的相关系数的计算(X,Y)~相关系数的性质对二元正态分布:X,Y独立=0X,Y不相关。若X与Y之间没有线性关系并不表示它们之间相互独立,也不表示它们之间没有关系。补充说明的量.之间线性关系紧密程度与量相关系数是表征随机变YX存在着线性关系;之间以概率与时,当,11YXYX=r之间的线性关系越弱;与时,越接近于当,YXYX0r一定不独立。与且,之间一定存在线性关系与,则若,YXYXYX0¹r例3.25解:独立。是否不相关,是否相互与判断,上的均匀分布,服从设
Y
XYX
,cossin],[q=q=pp-qòpp-qqp=dEX
sin21òpp-qqp=dEX
cos21òpp-qqp=dDX
2sin21òpp-qqp=dDY
2cos21òpp-qqqp=dEXY
cossin210=0=21=0=0=21=四、条件数学期望离散型随机向量的条件数学期望连续型随机向量的条件数学期望例3.26例3.27()服从圆域:,设二维随机向量YX122£+yx).1||(]|[
<=yyYXE试求的条件密度为时,可知,当由例
|
Xy1|8.3<()ïîïíì-££---=其它011121222yxyyyxfYX解:条件数学期望的性质随机变量X关于随机变量Y的条件数学期望例3.28()服从二元正态分布:,设二维随机变量YX()()rssmm,,,,,222121~NYX].|[YXE
求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级心理健康家庭支持计划
- 以录为翼启智生命:录像在高中生命科学实验教学中的多维应用与探索
- 以客户为中心:济南市ZDEY医院营销战略的深度剖析与创新实践
- 土木工程毕业设计范文
- 以学习敏锐度为导向:医药公司销售团队人员选聘的创新策略与实践
- 大班美术能力评估观察记录范文
- 园林绿化生态环境灾害恢复管理措施
- 急诊科新冠肺炎疑似病例应急流程
- 学校特色课程开发计划
- 幼儿园科学教育科研工作计划
- 陕西电信省市公司组织架构图
- 司法礼仪培训课件
- 尊贵客户刚购买了新一代电话感谢您对我们信任产品说明书
- 关于房颤科普知识讲座
- 关键零部件控制管理细则
- 录用通知书(offer模板):免修版模板范本
- 融媒体新闻报道实务 课件全套 第1-3部分 理论构建:融合新闻思维导图- 融媒体作品展示:实力呈现与效果
- 河南省物业服务收费管理办法
- 小区绿化图纸会审和设计交底记录
- 2022-2023学年云南省曲靖市五年级数学第二学期期末检测试题含解析
- 酒精所致精神障碍护理课件
评论
0/150
提交评论