下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题一导数的概念及运算在对函数求导时,应仔细观察及分析函数的结构特征,紧扣求导法则,联系学过的求导公式,对不具备求导法则条件的式子,在求导前应先利用代数、三角恒等变换对函数式进行化简,再求导.例1利用导数的定义求函数f(x)=eq\f(1,x+2)的导数解析因为Δy=eq\f(1,x+Δx+2)-eq\f(1,x+2)=eq\f(-Δx,x+Δx+2x+2),所以eq\f(Δy,Δx)=eq\f(-1,x+Δx+2x+2),所以f′(x)=lieq\o(m,\s\do4(Δx→0))eq\f(Δy,Δx)=lieq\o(m,\s\do4(Δx→0))[eq\f(-1,x+Δx+2x+2)]=-eq\f(1,x+2x+2)=-eq\f(1,x+22)..(巩固训练)设函数f(x)在x0处可导,则lieq\o(m,\s\do4(Δx→0))eq\f(fx0-Δx-fx0,Δx)等于()A.f′(x0)B.-f′(x0)C.f(x0)D.-f(x0)解析:lieq\o(m,\s\do4(Δx→0))eq\f(fx0-Δx-fx0,Δx)=-lieq\o(m,\s\do4(Δx→0))eq\f(f[x0+-Δx]-fx0,-Δx)=-f′(x0).故选B例2求下列函数的导数:(1)y=exlnx;(2)y=eq\f(1+sinx,1-cosx).解析(1)y′=(ex)′lnx+ex(lnx)′=exlnx+eq\f(ex,x).(2)y′=eq\f(1+sinx′1-cosx-1+sinx1-cosx′,1-cosx2)=eq\f(cosx1-cosx-1+sinxsinx,1-cosx2)=eq\f(cosx-sinx-1,1-cosx2)..(巩固训练)求下列函数的导数:(1)y=x2+tanx;(2)y=xe-x.解析:(1)因为y=x2+tanx=x2+eq\f(sinx,cosx),所以y′=(x2)′+(eq\f(sinx,cosx))′=2x+eq\f(cos2x-sinx-sinx,cos2x)=2x+eq\f(1,cos2x).(2)因为y=xe-x=eq\f(x,ex),所以y′=(eq\f(x,ex))′=eq\f(ex-xex,ex2)=eq\f(1-x,ex).专题二求切线的方程利用导数的几何意义是切点处切线的斜率求切线方程。有如下三种类型:①已知切点(x0,y0),求切线方程;②已知切线的斜率k,求切线方程;③求过(x1,y1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.类型①,利用y-f(x0)=f′(x0)(x-x0)直接求出切线方程.类型②,设出切点(x0,y0),再由k=f′(x0),再由(x0,y0)既在切线上,又在曲线上求解;类型③,先设出切点(x0,y0),利用k=f′(x0)及已知点(x1,y1)在切线上求解.例3函数f(x)=eq\f(lnx-2x,x)的图象在点(1,-2)处的切线方程为()A.2x-y-4=0 B.2x+y=0C.x-y-3=0 D.x+y+1=0解析f′(x)=eq\f(1-lnx,x2),则f′(1)=1,故该切线方程为y-(-2)=x-1,即x-y-3=0.故选C.(巩固训练)曲线y=x(3lnx+1)在点(1,1)处的切线方程为____________.【答案】4x-y-3=0解析因为y′=3lnx+4,所以k=y′|x=1=3ln1+4=4,又切点为(1,1),所以切线方程为y-1=4(x-1),即4x-y-3=0.例4与直线2x-y+4=0平行的抛物线y=x2的切线方程是()A.2x-y+3=0 B.2x-y-3=0C.2x-y+1=0 D.2x-y-1=0解析对y=x2求导得y′=2x.设切点坐标为(x0,xeq\o\al(2,0)),则切线斜率为k=2x0.由2x0=2得x0=1,故切线方程为y-1=2(x-1),即2x-y-1=0,故选D.(巩固训练)已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行于直线3x-y=0,则点P的坐标为________.答案:(1,0)解析:设点P的坐标为(x0,y0),因为f′(x)=4x3-1,所以4xeq\o\al(3,0)-1=3,所以x0=1.所以y0=14-1=0,所以即得P(1,0).例5过点A(0,16)作曲线y=x3-3x的切线,求此切线方程.解析因为点A(0,16)不在曲线y=x3-3x上,设切点为M(x0,y0),则有y0=xeq\o\al(3,0)-3x0,又y′x=x0=3(xeq\o\al(2,0)-1),故切线方程为y-(xeq\o\al(3,0)-3x0)=3(xeq\o\al(2,0)-1)(x-x0).所以A(0,16)在切线上,所以16-(xeq\o\al(3,0)-3x0)=3(xeq\o\al(2,0)-1)(0-x0),化简得xeq\o\al(3,0)=-8,解得x0=-2.所以切点为M(-2,-2),切线方程为9x-y+16=0(巩固训练)已知函数f(x)=xlnx,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为()A.x+y-1=0B.x-y-1=0C.x+y+1=0 D.x-y+1=0解析∵点(0,-1)不在曲线f(x)=xlnx上,∴设切点为(x0,y0).又∵f′(x)=1+lnx,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 活动策划策划职责要求(2篇)
- 2024年度产品代理合同:某高端化妆品在中国区代理
- 法院起诉合同范例
- 2024年小学第九套广播操比赛评分细则(2篇)
- 彩钢简易合同模板
- 公司办公管理制度例文(2篇)
- 电子门施工合同范例
- 物流物业合同模板
- 劳务用工协议书合同完整版
- 二零二四年度旅游服务合作经营协议
- 财务会计职业生涯人物访谈报告
- (完整版)电渣压力焊施工施工工艺
- PCM用户手册解析
- 二年级下册数学培优补差记录表
- 北京市甲级设计院
- 门窗安装三级安全教育考试.doc
- 隧道盾构超限质量事故报告(完整版)
- 个人财产申报表.doc
- 【PPT】初中英语课件:情景交际
- 港口国检查表PSC CHECKLIST
- 隧道管片外观缺陷修补施工方案(完整版)
评论
0/150
提交评论