版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AA一、选题1.在平面直角坐标系中,点
关于原点
的对称点是点
,则
OA
()A.B.C.D.52.若点
A
与点B关于轴称,则点B的标为()A.
(0,
B.
(2,0)
C.
(0,2)
.
(3.点(,)关于x轴对称点的坐标为()A.3,4)
B.﹣﹣)
C.(,)
.﹣,)4.在平面直角坐标系中,点P(,A.第二象限C.四象限
B.轴.轴5.在平面直角坐标系中,点A(m2)与点B(,)于y轴对称,则()A.=,=Bm=﹣,=2
C.=,=3.=﹣2,=36.如图eq\o\ac(△,,)中,垂直于D,且AD=BC,上方有一动点满足S
PBC
ABC
,则点P到两点距离之和最小时∠PBC的度数为()A.30°B45°C.D.90°7.如图,在平面直角坐标系上有个点
,点第1次上跳动个位至点
,紧接着第2次右跳动2个位至点
,第次上跳动1个位第4次左跳动3个位,第5次又向上跳动1个位,第6次右跳动个单位,…,依次规律跳动下去,点A第2019次动至点的坐标是()A.
B.
C.
.
8.下列数据中不能确定物体的位置的()
12n12nA.单元201号C.风路32号9.如果是任意实数,则点
(
B.偏东60°.经,北纬40°,一定不在()A.第一象限
B.二象限
C.第三象限
.四象限10.们规定:在平面直角标系中,任意不重合的两点
y2
之间的折线距离为
yy12
,例如图中点
与点
之间的折线距离为
.如图,知点标t的值为()A.
B.
C.5或
.711.图,已知点A,A(1,1)A(,(,A(2,1235的坐标为()2020
,
,则点A.
B.
(506,
C.
(
.
(505,505)12.图,弹性小球从点P()出发,沿所示方向运动,每当小球碰到正方形的边时反弹,反弹时反射角等于入射角,当小球第1次到正方形的边时的点为P(﹣2,)第2次到正方形的边时的点为P,,n次到正方形的边时点为,则
n7n7点P的坐标是()A.0,1)
B.﹣,)
C.(,)
.(0,)二、填题13.图,在纸面所在的平内,一只电子蚂蚁从数轴上表示原点的位置
点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个位,其移动路线如图所示,第次动,第2次移动到A,次移动到,,第n次动到,OAA22020
的面积是_________.14.点A(+m,﹣)与点B(3,)于轴对称,则(+)的是_____.15.所有正整数从小到大列,并按如下规律分组、,3)(4,,、,,9,、…,若Aa,)表示正整数为a组第个数从往右数,A=(41)则=______________16.图,已知(1,0),A,(,A,(2,12坐标为.
,
则的2020.若点P()x轴上,则点P的坐标为.18.图,将正整数按如图示规律排列下去,若用有序数对m,)示m排左到右第个数,如(,)示9,(4)表______.
11111119.知,点的标为
(2,3),点Q坐标为,3),则.20.平面直角坐标系中,段AB平于x轴且,点A坐为-1,)点B的坐标为(,)则三、解题21.图所示的正方形网格,每个小正方形的边长都是1,顶都在网格线的交点上,点B坐标为(﹣,)点坐标为(2﹣)()据上述件,在网格中建立平面直角坐标系xOy;()eq\o\ac(△,)ABC分关于轴的对称图eq\o\ac(△,)AB;()出点关y轴对称点的坐标.22.图,平面直角坐标系
的顶点均在格点上,点的坐标为
.()在图中出与
关于轴称的A
;()出点
A
和点C
的坐标.()
的面积.
23.如图所示的正方形网中,每个小正方形的边长为1,格点三角形(顶点是网线的交点的三角形)
的顶点,
C
的坐标分别为
,
.()如图所的网格平面内作出平面直角坐标系;()出
关于轴称的
B
;()P轴上的动点,在图中找出使A长最短时的点.24.图,在直角坐标系内
111111111111()出
ABC
,其中,B,(4,3);()()
ABC
关于轴轴对称图形DEF;的周长和面积,25.图,在12×10的正方形网格中eq\o\ac(△,)ABC是格点三角形,点的坐标为(﹣,)点的标为(﹣4,)()在方格中画出x轴、y轴,并标出原点;()eq\o\ac(△,)关于直线对称eq\o\ac(△,)BC;的标为()点P(,)eq\o\ac(△,)ABC内其关于直线的称点是,P的标是.26.知:A,)B2,)C(,)
()坐标系描出各点,画eq\o\ac(△,)ABC;()eq\o\ac(△,)ABC的面积;()点P在y轴,eq\o\ac(△,)eq\o\ac(△,)的积相等求P的标.【参考答案】***试卷处理标记,请不要除一选题1C解析:【分析】根据对称性知道OA计算的度即可.【详解】
,
2=5,点
关于原点的称点是点A
,
OA
=5,故选:.【点睛】本题考查了关于原点对称,点到原点的距离计算,熟练掌握原点对称的性质,点到原点的距离计算是解题的关键.2.C解析:【分析】根据关于x轴称的点的横坐标相等,纵坐标互为相反数,可得答案.
【详解】解:点与点关于轴称,点A的标为0,),则点B的标是(,).故选:.【点睛】本题考查了关于轴对称的点的坐标,利用关于轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.3.A解析:【分析】利用关于x轴称点的坐标特点:横坐标不变,纵坐标互为相反数.即点(x,)于x轴的对称点的坐标是(,-y),得出即可.【详解】点(,)于x轴称点的坐标为:,)故选:.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.4.B解析:【分析】根据点的坐标特点判断即可.【详解】在平面直角坐标系中,点P(,)x轴上,故选.【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.5.B解析:【分析】直接利用关于轴对称点的性质得出答案.【详解】解:点(m,2与点B3,)于y轴称,m=-3,.故选:.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.B解析:【分析】
nnn123456789nnn123456789根据
S
PBC
ABC
得出点P到BC的离等于的一半,即点P在过的中点且平行于BC的线l上则此问题转化成在直线l上求作一点,使得点到B、两距离之和最小,作出点关直线的对称点’,接’,然后根据条件证eq\o\ac(△,明)是腰直角三角形即可得PBC的数.【详解】解:
S
PBC
S
ABC
,点到BC的距=
,点在过的点E且平行于BC的直线上,作点关于直线l的对称点C,连接BC’,交直线于点P,则点P即到、两点距离之和最小的点,ADBC,为的中点,lBC点和关于直线l对称,’=AD=BC,BC,三形BCC是等腰直角三角形,PBC.故选.【点睛】本题主要考查了轴对称变—最短距离问题,根据三角形的面积关系得出点P在的中点E且行于BC的直线l上解决此题的关键.7.B解析:【分析】设第次跳动至点,根据部分点A坐的变化找出变化规“(,),(n-12n+1)A(,),(n+1,)(n为自然数),依此规律结合2019=504×4+3即得出点A的坐标.【详解】解:设第次动至点A,观察,发现A,),A(,)A(,)A(,2),A(,)A(2,)A(,)(,),A(4)A(,),,A
(,),(,),(,2n+1)A(,)(n为自然数).2019=504×4+3
nnA
(,504×2+2)即
.故选:.【点睛】本题考查了规律型中点的坐标,根据部分点坐的变化找出变化规律A(-n-1,2n),(,),(,)A(,)n为然数)”是解题的关键.8.B解析:【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【详解】解:、单201号是有序数对,能确定物体的位置,故本选项错误;B、偏东60°,不是有序对,不能确定物体的位置,故本选项正确;C、风路32号,清风”相当于一个数据,是有序数对,能确定物体的位置故本选项错误;、经北40°,有序数对,能确物体的位置,故本选项错误;故选:.【点睛】本题考查了坐标确定点的位置,要明确,一个有序数对才能确定一个点的位置.9.D解析:【分析】根据点P纵坐标一定大于横坐标和各象限的点的坐标进行解答.【详解】解:a
,即点P的坐标一定大于横坐标,又第象限的点的横坐标是正数,纵坐标是负数,第象限的点的坐标一定大于纵坐标,点P一不在第四象限.故选:D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限
(
;第二象限
(
;第三象限
(
;第四象限
(
.10.解析:【分析】根据折线距离的定义可得关于t的绝对值方程,解方程即可求出t的,进而可得答案.【详解】
8234582345解:
P标为
,
,解得:
tt.故选:.【点睛】本题考查了坐标与图形,正确理解折线距离、掌握绝对值方程的解法是解题的关键.11.解析:【分析】由在面直角坐标系中位置,经观察分析所有点,除A外其他所有点按一定的20201规律分布在四个象限,且每个象限的点满足:循次数余,余数0,1,2,3确定相应的象限,由此确定点在三象限,根据推导可得出结论;2020【详解】由题可知,第一象限的点:,…角除以4余为2;第二象限的点:,A,…角除以4余数为;3第三象限的点:A,A,角除以4余为0第四象限的点:
A,5
,角除以4余为1由上规律可知:
,点2020
在第三象限,又A(,A(,4A.2020即点的标为2020故答案选C.【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键.12.解析:【分析】按照反弹规律依次画图即可.【详解】解:解:如图,根据反射角等于入射角画图,可知光线从反射后到(,)再反射到(,),再反射到(,),再反射到P点0,)之后,再循环反射,每6次一循环,2020÷6=336,点的标是(),故选:.
【点睛】本题是规律探究题,解答时要注意找到循环数值,从而得到规律.第II卷非选择题)请点击修改第卷文字说明二、填题13.505【分析】由图可得分别表示246通过找规律可得表示进而可得的长根据三角形的面积公式计算即可求解;【详解】由题意得分别表示示1010=1010△的面积为故答案为:505【点解析:【分析】
246∴表由图可得
AAA,AA2312
分别表示2,,,过规律可得表,进2020而可得
A,的,根据三角形的面积公式计算即可求解;2【详解】由题意得
AAA,AA2312
分别表示2,,2020
表示1010,OA2020
=1010OAA2
的面积为=
,故答案为:.【点睛】本题主要考找规律,三角形的面积,找规律求解是解题的关键.202014.【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数纵坐标相等进而得出答案【详解】解:∵点A(1+m1-n)与点B()关于轴对称∴1+m=31-n=2m=2n=-1(m+n)解析:【分析】直接利用关于轴对称点的性质得出横坐标互为相反数,纵坐标相等,进得出答案.
n771n771【详解】解:点1+m,)与点B(,)于y轴称,,,,n=-1,(+)
=()=1;故答案为:.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.15.(65)【分析】通过新数组确定正整数n的位置An=(ab)表示正整数为第a组第b个数(从左往右数)所有正整数从小到大排列n个正整数第一组(11个正整数第二组(23)个正整数第三组(456)三解析:,【分析】通过新数组确定正整数n的位置,A=(,)表示正整数为第a组个数(从往右数所有正整数从小到大排列第n个整数,第一组(),个整数,第二组2,32个正整数,第三组(4,5,6三个正整数…,这样1+2+3+4+…+a>,1+2+3+4+,确第a组个数从哪一个是起,直到第b个数从左往右表示正整数A表示正整数7按律排1+2+3+4=10>7,1+2+3=6<7,说明7在组,第四组应有个数为()7是组的第一个数,为此P=4,1),理解规律,求第几组排进20,1+2+3+4+5+6=21>20,,六组从16开始,按顺序找即可.【详解】A是正整数20的排序,按规律,明20在六组,而1+2+3+4+5=15<20第六组从16开,取6个即第六组数,,,,21)从左数第个是20,故A=(,)故答案为:6,)【点睛】本题考查按规律取数问题,关键是读懂An=,)含义,会用新数组来确定整数的位置.16.【分析】根据题意可得各个点分别位于象限的角平分线上A1和第四象限的点除外)逐步探索出下标和各点坐标之间的关系总结出规律根据规律推理结果【详解】通过观察可得:下标数字是4的倍数的点在第三象限∵202解析:
【分析】根据题意可得各个点分别位于象限的角平分线上(A和第四象限的点除外),逐步探索出下标和各点坐标之间的关系,总结出规律,根据规律推理结果.【详解】
通过观察可得:下标数字是的倍数的点在第三象限,2020÷4=505,一第三象限点的坐标是,)第二圈第三象限点的坐标是,-2)第三圈第三限点的坐标是-3,),点2020
在第三象限,且转了505圈即在第圈,2020
的坐标为
.顾答案为:
.【点睛】本题考查平面直角坐标系中找点的坐标规律,结题关键是找出坐标系中点的位置和坐标之间的对应关系以及点所在象限和下角标的关系.17.(20)【分析】根据轴上点的坐标的特点y=0计算出m的值从而得出点P坐标【详解】解:∵点P(2m+43m+3)在x轴上∴3m+3=0∴m=﹣12m+4=2∴点P的坐标为(故答案为()解析:2,)【分析】根据轴点的坐标的特点,计算出m的值,从而得出点P坐.【详解】解:点P(,)x轴上,,m=﹣,,点的坐标为20,故答案为(,).18.109【分析】每排数据的个数等于排号数则可计算出前14排共有个数然后再往后数4个数即可【详解】解:前14排共有1+2+3+个数所以第15排的第4个数为即(154)表示10解析:【分析】每排数据的个数等于排号数,则可计算出前14排共有个数,然后再往后数4个数即可.【详解】解:前14排有1+2+3+…+14=105个,所以第15排第4个数为109,,)表示故答案为.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.19.或-8【分析】根据点的纵坐标相等两点间的距离等于横坐标的差的绝对值
1111列方程求解即可【详解】解:∵点P坐标为(23)点坐标为Q(∴点PQ的纵坐标相等PQ∥轴∵PQ=6|-2-m|=6-2解析:或8【分析】根据点的纵坐标相等,两点间的距离等于横坐标的差的绝对值列方程求解即可.【详解】解:点P坐标为(
-
2,),点坐为(,)点P、的纵坐标相等,x轴,,|-2-m|=6,-2-m=6或2-m=-6解得:或.故答案为:或.【点睛】本题考查了点的坐标,观察出两点的纵坐标相等从而确定出两点间的距离等于横坐标的差的绝对值是解题的关键.20.或3【分析根据题意求出ab的值计算即可;【详解】∵AB平行于x轴且AB=4点A坐标为(-12∴或∴或;故答案是或-3【点睛】本题主要考查了坐标与图形的性质明确平行于x轴的直线上的纵坐标相等解析:或3【分析】根据题意求出,b的值计算即可;【详解】AB平行于轴且,点坐标为,2),,a
4
或
a
4
,
或
;故答案是5或.【点睛】本题主要考查了坐标与图形的性质,明确平行于x轴直上的纵坐标相等是解题的关键.三、解题21.1)解析;2见解析;()(,)【分析】()据B,两坐标,分别确定横轴与纵轴的位置,即可作出平面直角坐标系;()别作出,C的应点,,,依次连接即可得出图形;()据轴对与坐标变换的性质,由点的标即可得出结果【详解】
11111解:()图平面直角坐标系即为所求作.()图eq\o\ac(△,)ABC;为所求作.()点A的坐标为(,),点关轴称点的坐标,)【点睛】本题考查作轴对称变换,解题的关键是熟练掌握平面直角坐标系中的坐标特点及轴称与坐标变换之间的规律.22.1)解析;2
;()【分析】()据轴对的性质,即可得到A次接即可.()据图像接找出坐标即可.()据割补即可得eq\o\ac(△,)ABC的积.【详解】()图所示
1111()A2,3B点为()的积为:1122
【点睛】本题考查作轴称变换解题关键熟练掌握轴对称图形的作法.23.1)案见解析;2答案见解析;3)答见解析.【分析】()据点A,C的标立平面直角坐标系即可;()出各点于轴对称点,再顺次连接即可;()点关轴的对称点B,接′B交轴于点.【详解】解:()图()图,
即为所求.()图,点即为所求.
【点睛】本题考查的是作—轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的键.24.1)见解析;)图见解析;3)
ABC
的周长为510,积为
.【分析】()用AB,各点坐标在平面坐标系中描出即可;()别作出A、、关轴的对称点,再顺次连接可得;()用割补求解可得到面积,借助网格利用勾股定理分别求出三边即可求得周长.【详解】解:()
ABC
如图所示;()DEF如所示;()
S
15222
,ABC
的周长
ABAC
1
1
.【点睛】本题考查坐标与图形变换轴对称,勾股定理.熟练掌握网格结构,准确找出对应点的位置是解题的关键.25.1)见解析;2)解析;05);()(﹣﹣,)
11111111111111【分析】()用AC点坐标画出直角坐标系;()用网格和对称的性质画出A、、关直线l的对称点A、、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统编版语文三年级下册情境化试期末测试题(含答案)
- 山东省烟台市招远市(五四学制)2024-2025学年八年级上学期期末考试语文试卷(含答案)
- 【先学后教新思路】2020高考物理一轮复习-教案39-磁场
- 2022《全程复习方略》高考生物一轮复习:单元评估检测(四)-必修一第六章细胞的生命历程
- 【考前三个月】2021届高考物理(安徽专用)专题讲练:专题4-万有引力定律及其应用
- 【全程复习方略】2020年数学文(广西用)课时作业:第十一章-第三节相互独立事件同时发生的概率
- 五年级数学(小数除法)计算题专项练习及答案
- 三年级数学计算题专项练习及答案
- 【全程复习方略】2020年高考化学课时提能演练(八)-2.4-铁及其化合物(鲁科版-福建专供)
- 《神经肌肉促进技术》课件
- 基于STEAM教育的小学德育创新实践研究
- 2024年03月山东烟台银行招考笔试历年参考题库附带答案详解
- 河道综合治理工程施工组织设计
- 安徽省合肥市蜀山区2024-2025学年七年级上学期地理期末模拟练习(含答案)
- 新建设项目施工人员安全教育培训课件
- 江苏省扬州市2024-2025学年高中学业水平合格性模拟考试英语试题(含答案)
- 品质总监转正述职报告
- 2024年游艇俱乐部会员专属活动策划与执行合同3篇
- 2025年蛇年年度营销日历营销建议【2025营销日历】
- 福建省泉州市2023-2024学年高一上学期期末质检英语试题 附答案
- 安保服务评分标准
评论
0/150
提交评论