建筑经济与管理资金的时间价值_第1页
建筑经济与管理资金的时间价值_第2页
建筑经济与管理资金的时间价值_第3页
建筑经济与管理资金的时间价值_第4页
建筑经济与管理资金的时间价值_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.资金的时间价值和等值计算2.1.资金时间价值的基本概念2.1.1.资金时间价值的意义资金的时间价值就是指资金在扩大再生产及其资金的循环和周转过程中、也就是在产品价值的形成过程中,随时间的变化产生的资金增值或经济效益,具体体现在资金的利息和资金的纯收益两个方面。首先,资金时间价值是商品生产和交换经济条件下的一个经济范畴,现在我国正在走向市场经济,计划经济的模式被打破,以市场来进行调节,社会上只要存在(cúnzài)商品生产和商品交换,就必然存在(cúnzài)资金的时间精品资料因素(yīnsù),而且每时每刻在发挥作用,因此就必须对它进行研究。现在我国还部分存在争建设项目,争基建投资的现象,因此造成严重浪费与资金积压,大大降低了经济效益。现在资金的时间问题已经被各行各业重视起来,认识到其可以促使建设资金合理使用,使有限的资金发挥更大的作用,这样就有一些人动起了资金脑子,打一些资金的时间差:放高利贷;借钱不还;买东西不付钱;拖欠各种款项;设立各种基金,搞各种非法集资;募捐。精品资料现在,引进利用外资越来越多,要同资本家打交道,他们在进行贸易和投资中已附加了极其(jíqí)苛刻的资金时间价值,所以我们必须具有资金时间价值的观念,才不至于吃亏。所以在基本建设中,技术改造中,都必须认真考虑资金的时间价值,千方百计缩短建设周期,加速资金周转,节省资金占用的数量和时间,提高资金使用的经济效益。例子:用一个实例说明资金的时间价值某工厂建厂时因考虑到大量的原材料的运输问题,因而建在原材料产地的附近。近年,因原材料产地的精品资料资源枯竭,所需的原材料必须从外地运来,致使产品的成本(chéngběn)大幅上升,因而打算研究是否将该厂迁至新的原材料场地的问题。根据计算迁到新厂址每年预计可节约运费1000万元,建厂期间原厂照常生产。假设新厂的寿命期为20年。出卖现有工厂用地的价格将比购买新厂址用地的价格低,加上搬迁和搬迁期间所造成的损失,以及建新厂所花的投资,总和应为多少才合适呢?根据上述情况,认为20年总计可以节约2亿元,因而认为搬迁等所花总费用只要少于2亿元就算合算的想法是否正确呢?如果这种想法正确,那么是否意味着精品资料当新工厂的寿命期为无限时,建新厂无论花多少(duōshǎo)钱都算合算的呢?事实上上述想法是不对的。因为如果这2亿元不用于搬迁,而是以6%的年利率存于银行,则每年的利息金额就是1200万元。该值比每年运费的节约金额还要大,而且将资金存入银行的作法对谁都是可以办到的。中国有许多好词:“有钱不买半年闲”精品资料2.1.2.衡量资金时间因素的尺度1.利息、盈利或净收益,都可视为使用资金的报酬,它是投入资金在一定时间内产生的增值,银行存款获得的资金增值叫利息,把资金投入生产(shēngchǎn)建设产生的资金增值称为盈利或净收益。可见利息或盈利、净收益都是资金时间因素的体现,它们是衡量时间因素的绝对尺度。2.利率、盈利率或收益率,是一定时间(通常为年)的利息或收益占原投入资金的比率,也称为使用资金的报酬率,它反映资金随时间变化的增值率,因此它是衡量资金时间因素的相对尺度。精品资料例如:6%的应付利率即0.06的年利率,这相当于0.015的季利率或0.005的应付月利率。在技术经济分析中,利息和盈利,利率和盈利率或收益率是不同的概念,在研究投资的经济效果时,经常使用净收益(或盈利)和收益率(或盈利率)的概念,在分析资金信贷时,则使用利息和利率的概念。2.1.3.现金流量与等值的概念现金流量是企业在研究周期内实际支出资金和收入资金的代数和,因此(yīncǐ)现金流量有正有负,正现金流量表示在一定研究周期内的净收入,负现金流量表示在一定研究周期内的净支出。精品资料现金流量图

一个建设项目或一个企业(qǐyè)的资金有收(流入为正)、有支(流出为负),若资金为正值,就在现金流量时间标尺上方画上向上的箭头,若资金为负值,就在标尺下方画上向下的箭头,箭头要画在每个计息周期的开始,也就是上个计息周期的终点。i=6%N精品资料现金流量的计算公式为:净销售金额-生产费用=毛利毛利-折旧费-所得税=净收入净收入-流动资金(当年收入的)-基建投资费用(当年发生(fāshēng))=净现金流量当分析某一具体工程项目的现金流量时,还需要绘制该工程项目从建设开始至寿命终结时的累计现金流量曲线图。精品资料建设期生产期投资偿还期-3-2-1012345678投资流动资金ABCEFG盈利期基建D9R10土地投资项目(xiàngmù)累计现金流量图精品资料现值:资金(zījīn)的运动过程中,把将来准备支出或将来要求得到的一笔资金(zījīn),折算成现在需要的货币量。终值:一笔资金(zījīn)在若干个计息周期末(资金(zījīn)流的结束)的其终值,即:全部计息周期的本利和称终值或未来值。时值:资金(zījīn)的数值由于计算利息而随时间增值,在每个计息周期末的数值是不等的,在时点的资金(zījīn)成为时值。贴现和贴现率:把将来的现金流量折算(或者叫折现)为现在的时值,叫做“贴现”,贴现时间所用的利率,称为贴现率,贴现是复利计算的倒数。精品资料等值:不同的时间不同的金额可以具有相等的经济价值,如果利率或收益率一经确定,则可对资金的时间因素(yīnsù)作定量的计算。例如:利率为年8%,现在1000元,一年以后增加80元,本利和将增加到1080元,根据资金时间价值的观点我们就不能认为一年后的1080元比现在的1000元多,而应视为是彼此相当的,(不包括通货膨胀,货币贬值因素(yīnsù))也就是说互相等值的,因此不同时间的两笔资金或一系列资金,可按某一利率换算至某一相同的时间使之彼此“相等”,这就是等值的概念。精品资料等值的概念是技术经济分析比较评价不同时期资金使用效果的重要依据。2.1.4.计算资金时间因素(yīnsù)的方法利息和利率或净收益和收益率衡量资金时间因素(yīnsù)的尺度,所以计算资金时间因素(yīnsù)的方法,就是计算利息的方法,利息由单利和复利两种。1.单利法单利法是以本金为基数计算资金因素(yīnsù)(即利息)的方法,不将利息计入本金内,也不再生息,单利计算公式:精品资料式中:i----为利率、通常以百分率表示,即在一年内,投资所得之利益(lìyì)与原来投资额之比。n---利息周期数,通常为年.P----本金F----本利和例:太钢热连轧工程投资由建行贷款16亿元,年利率为12%,10年后一次结清,以单利计算应换本利和为:F=P(1+ni)=16(1+10×0.12)=35.2亿元单利法在一定程度上考虑了资金的时间因素,但不彻底,因为,以前每年已经产生的利息没有累计利息,所以单利法是个不够完善的方法。精品资料2.复利法复利法是以本金和累计利息之和为基数计算资金时间价值(即利息)的方法,也就是利上加利的计算方法计算如下:F=P(1+I)n某项目投资1000元,每年利率为7%,如果利息不取而是继续投资,那么盈利额将会逐年(zhúnián)增加,这种重复计算盈利的方法,即复利计算法。精品资料年份年初本金当年盈利年末本利和nPPiP+Pi110001000×7%=701070.00210701070×7%=74.91144.9031144.91144.9×7%=80.1431225.0441225.041225.04×7%=85.751310.79复利法不仅本金逐期计息,而且以前累积的利息,亦逐期加利,即利上加利。因此复利法能够较充分地反映资金的时间因素,也更符合客观实际(shíjì),这是国外普遍采用的方法,也是国内现行信贷制度推行的方法。精品资料2.2.计算资金时间因素的普通复利公式普通复利公式是指以年复利计息,按年进行支付的复利计算公式,根据支付方法和等值换算时点(shídiǎn)的不同,可分为若干类:2.2.1.一次支付复利公式1、一次支付未来值公式(一次支付复利因子)现在投资P元,利率(收益率)为1%(为i)到n年末累计本利和将为多少?精品资料一年年初本金当年利息年终本利和(F)1.PPiP+Pi=P(1+i)2.P(1+i)P(1+i)iP(1+i)+P(1+i)i=P(1+i)23.P(1+i)2P(1+i)2iP(1+i)2+P(1+i)2i=P(1+i)3nP(1+i)n-1P(1+i)n-1iP(1+i)n-1+P(1+i)i=P(1+i)n表达式(1+i)n称为一次支付复利因子(yīnzǐ),并用函数符号(F/P.i.n)表示。(F/P.i.n)的含义为:已知P求F,利率和期数分别为i和n。精品资料例:某基本建设由投资由银行贷款1000万元,年利率为4.8%,10年后一次结清,以复利计息,应还本利合为若干?解:已知P=1000i=4.8%n=10F=P(1+i)n=1000(1+0.048)10=1598.13万元2、一次支付现值公式(一次支付现值因子(yīnzǐ))若已知Fin求P则需要用一次支付现值公式

表达式叫一次支付现值系数(因子(yīnzǐ))P=(P/F.i.n)精品资料例:设想10年后要求从银行里拿到5万元,在利率为8%的条件下,现在应存入银行多少钱?解:已知F=5万元n=10万元2.2.2.等额支付序列复利公式(等额多次支付利息公式)等额多次支付是指诸如(zhūrú)在某年一次存入银行一笔资金,而在今后几年里每年年末从银行提取等额的资金,在最后一次要求把本利全部提完;或今后几年里每年精品资料存入银行等额的资金,在最后一次存入那年的年末,全部提出来的形式。1.等额支付序列终值公式(等额多次支付复利因子)当一连串期末等额支付值为A,n年末包括利息(lìxī)在内的累计值F的计算公式:F=A(1+i)n-1+A(1+i)n-2+A(1+i)n-3+·····+A(1+i)2+A(1+i)+A整理得式中精品资料F=?01234n-2n-1n

AAAAAAAA等额支付序列现金流量图若在n年内每年末投资A元,则在n年末累积起来的总数F显然等于各次投资之未来值总和,第一(dìyī)年末的投资A可得到n-1年的利息,因此其本利和应为A(1+i)n-1,第二年末的投资在剩下的n-2年末的本利和应为A(1+i)n-2,如此直至第n年末投资不得利息,本利和仍为A,于是总数F为各年本利之和。精品资料叫做等额支付(zhīfù)序列未来值系数或等额多次支付(zhīfù)复利因子。例:某厂准备自筹资金扩建,连续五年每年年末从利润中提取50万元存入银行年利率8%复利计息,是问第五年末能筹集到多少资金?解:已知A=50万元i=0.08n=5

由此可见,其方法可作为投入基金或基金存储。精品资料2、等额支付序列偿债基金公式(等额多次支付偿债基金因子)当n期末要获得未来值F为已知时,以复利计算,每年应投入基金(或存储基金)为多少(duōshǎo)?用上一个公式(投入基金或基金存储公式)进行计算。等额支付序列偿债基金公式,可直接由前式求解A

式中为等额支付序列偿债基金系数或等额多次支付偿债基金因子。精品资料F0123n-4n-3n-2n-1n

AAAAAAAA已知F求A的现金流量图例:若要在8年以后得到包括利息在内的200万元资金,利率为8%每年应投入(tóurù)(或存储)的基金为多少?解:精品资料3、等额支付序列资金回收公式(等额多次支付资金回收因子)若以年利率i投资P元,则在n年内的每年末可将初投资金全部提完?注意资金回收涉及(shèjí)到在n年全部回收初投资金P,须在n年之内每年末等量地提取A,推导:由等额支付序列偿债基金公式

用一次支付复利公式代入

精品资料式中叫等额支付序列(xùliè)资金回收系数(等额多次支付资金回收因子)例:某厂的总投资为800万元,年利率为12%,欲以10年收回,每年应回收多少资金?解:精品资料4、等额支付序列现值公式(等额多次支付现值因子)如果在收益率为i的情况下,希望在今后n年内,每年(měinián)末取得等额的存款或收益A,现在必须投入多少资金?

由回收公式:求解P而得精品资料式中:叫做等额支付序列现值系数(xìshù)(等额多次支付现值因子),而(P/A.i.n)是它的函数符号。例:为在未来的15年中每年末取回3万元,现需以8%的利率向银行存入现金多少呢?解:精品资料2.2.3.不等额支付序列复利公式1.不等额支付序列未来值公式当一连串的期末(qīmò)不等额多次支付值为K1.K2..K3.·····Kn,n年末包括利息在内的累计计算方法。Kpr---工程开始建设时计划投资总额(即投资额);Kt-----工程建成投产前实际投资总额(元或万元);K1.K2.K3······Kn----工程建设期内各年分别使用的计划投资额。精品资料例:某工程计划总投资额为3000万元,三年建成,第一年投资1200万元,第二年投资1000万元,第三年投资800万元,年利率为8%,则在第三年实际(shíjì)投资总额为多少?解:Kpr=1200(1+0.08)3+1000(1+0.08)2+800(1+0.08)=1511.65+1166.4+864=3542.05万元从计算结果可知,计算投资3000万元,到工程建成时,实际(shíjì)所花的投资为3542.05万元。精品资料2.不等额支付序列现值系数(xìshù)如果规定建设工程的实际投资不能超过预定的投资额,以工程建成的时间为准,则必须把每年的计划投资换算成现值资金使用,

即:

P----实际投资的现值资金总资例:某工程国家要求建成投资总额不能超过3000万元,三年建成按计划分配,第一年投资1200万元,第二年投资1000万元,第三年投资800万元,精品资料建设银行贷款年利率为8%,则每年(měinián)实际可用于建设工程的投资现值总额为多少?解:由此可见,工程建成所花的基本建设投资3000万元,实际用在工程建设上的只有2550.68万元,按现值计算其中第一年投资925.99万元,第二年投资857.34万元,第三年投资740.74万元,其余449.32万元交了利息,占投资者投资总额的14.977%,可见缩短建设周期的重要性。精品资料2.3、名义利率(lìlǜ)和实际利率(lìlǜ)在前面的分析计算中,都是假设计算利息的时间和利率(lìlǜ)的时间单位相同,即均为一年。但如果计算利息的时间与利率(lìlǜ)的时间单位不同时,情况会怎样呢?名义利率(lìlǜ)是指利率(lìlǜ)的表现形式,而实际利率(lìlǜ)是指实际计算利息的利率(lìlǜ)。在实际应用中,计息周期并不一定以每年为一个周期,可以按半年一次;每季一次;每月一次;或以日计息,同样的年利率(lìlǜ),由于计息周期不同,其利息也不同,因而产生名义利率(lìlǜ)和实际利率(lìlǜ)两种,所谓名义利率(lìlǜ)或称虚利率(lìlǜ),就是非实效的利率(lìlǜ)而实际利率(lìlǜ)则是精品资料有效的利率。名义利率为利息周期利率乘以每年的利息周期数,如利息周期利率为每月1%则可以(kěyǐ)每年名义利率12%表示;实际利率是以利息周期利率来计算年利率,也就是考虑了利息的时间价值。以名义利率计算实际利率的公式为:i=(1+r/c)c–1其中:i---实际利率r---名义利率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论