




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间向量法解决立体几何问题数学专题二.专题提纲二、立体几何问题的类型及解法1、判断直线、平面间的位置关系;
(1)直线与直线的位置关系;(2)直线与平面的位置关系;(3)平面与平面的位置关系;2、求解空间中的角度;3、求解空间中的距离。1、直线的方向向量;2、平面的法向量。一、引入两个重要空间向量.一.引入两个重要的空间向量1.直线的方向向量把直线上任意两点的向量或与它平行的向量都称为直线的方向向量.如图1,在空间直角坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直线AB的方向向量是zxyAB.2.平面的法向量如果表示向量n的有向线段所在的直线垂直于平面α,称这个向量垂直于平面α,记作n⊥α,这时向量n叫做平面α的法向量.
αn.在空间直角坐标系中,如何求平面法向量的坐标呢?如图2,设a=(x1,y1,z1)、b=(x2,y2,z2)是平面α内的两个不共线的非零向量,由直线与平面垂直的判定定理知,若n⊥a且n⊥b,则n⊥α.换句话说,若n·a=0且n·b=0,则n⊥α.abnα.求平面的法向量的坐标的步骤第一步(设):设出平面法向量的坐标为n=(x,y,z).第二步(列):根据n·a=0且n·b=0可列出方程组第三步(解):把z看作常数,用z表示x、y.第四步(取):取z为任意一个正数(当然取得越特殊越好),便得到平面法向量n的坐标..例1在棱长为2的正方体ABCD-A1B1C1D1中,O是面AC的中心,求面OA1D1的法向量.AAABCDOA1B1C1D1zxy.解:以A为原点建立空间直角坐标系O-xyz(如图),设平面OA1D1的法向量的法向量为n=(x,y,z),则O(1,1,0),A1(0,0,2),D1(0,2,2)由=(-1,-1,2),=(-1,1,2)得,解得取z=1得平面OA1D1的法向量的坐标n=(2,0,1).AAA1B1C1D1ABOCDxzy.练习答案:.二.立体几何问题的类型及解法1.判定直线、平面间的位置关系(1)直线与直线的位置关系不重合的两条直线a,b的方向向量分别为a,b.①若a∥b,即a=λb,则a∥b.②若a⊥b,即a·b=0,则a⊥babab.三、简单应用练习1:设直线l,m的方向向量分别为
,,根据下列条件判断l,m的位置关系:.例2已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,∠C1CB=∠C1CD=∠BCD=θ,求证:CC1⊥BDA1B1C1D1CBAD.证明:设a,b,c,依题意有|a|=|b|,于是a–b∵=c(a–b)=c·a–c·b=|c|·|a|cosθ–|c|·|b|cosθ=0∴CC1⊥BD
.向量法..坐标法.(2)直线与平面的位置关系直线L的方向向量为a,平面α的法向量为n,且Lα.①若a∥n,即a
=λn,则L⊥α②若a⊥n,即a·n=0,则a∥α.naααnaLL.例3棱长都等于2的正三棱柱ABC-A1B1C1,D,E分别是AC,CC1的中点,求证:(I)A1E⊥平面DBC1;(II)AB1∥平面DBC1A1C1B1ACBEDzxy.解:以D为原点,DA为x轴,DB为y轴建立空间直角坐标系D-xyz.则A(-1,0,0),B(0,,0),E(1,0,1),A1(-1,0,2),B1(0,,2),C1(1,0,2).设平面DBC1的法向量为n=(x,y,z),则解之得,取z=1得n=(-2,0,1)(I)=-n,从而A1E⊥平面DBC1(II),而n=-2+0+2=0AB1
∥平面DBC1.DACBBCDAFEXYZ.DACBBCDAFEXYZ.三、练习:
1,在正方体ABCD-A1B1C1D1中,P在A1B1上,Q在BC上,且A1P=QB,M、N分别为AB1、PQ的中点。求证:MN//平面ABCD。.DBCAA1QPNMD1C1B1zyxo证明:建立如图所示的空间直角坐标系o-xyz设正方形边长为2,又设A1P=BQ=2x则P(2,2x,2)、Q(2-2x,2,0)故N(2-x,1+x,1),而M(2,1,1)所以向量(-x,x,0),又平面AC的法向量为(0,0,1),∴∴
又M不在平面AC内,所以MN∥平面AC.(3)平面与平面的位置关系平面α的法向量为n1,平面β的法向量为n2
n1n1n2
n2①若n1∥n2,即n1=λn2,则α∥β②若n1⊥n2,即n1·n2=0,则α⊥ββαβα.练习2:设平面
,的法向量分别为
,,根据下列条件判断,的位置关系:.DACBBCDAFEXYZ正方体ABCD-A’B’C’D’中,E、F分别是CC’、BD的中点。求证:面A’D’F⊥面BDED’(0,0,2)例.设平面DBE的法向量为n1=(x,y,z)得解得取y=-1,得平面DBE的法向量为n1=(1,-1,2)同理可得平面A’D’F的法向量为n2=(0,2,1)∵n1·n2=0-2+2=0∴面DBE⊥面A’D’F.2.求空间中的角.例5如图在正方体ABCD-A1B1C1D1中,M是AB的中点,则对角线DB1与CM所成角的余弦值为_____.BC
A
MxzyB1C1D1A1CD.解:以A为原点建立如图所示的直角坐标系A-xyz,设正方体的棱长为2,则M(1,0,0),C(2,2,0),B1(2,0,2),D(0,2,0),于是,
∴cos<,>=.练习..例6正三棱柱ABC-A1B1C1的底面边长为a,高为,求AC1与侧面ABB1A1所成的角zxyC1A1B1ACBO.解:建立如图示的直角坐标系,则A(,0,0),B(0,,0)A1(,0,).C(-,0,)设面ABB1A1的法向量为n=(x,y,z)由得取y=,得n=(3,,0)而∴∴C1A1B1CAOBxyz.答案:C...(3)二面角设n1、n2分别是二面角两个半平面α、β的法向量,由几何知识可知,二面角α-L-β的大小与法向量n1、n2夹角相等(选取法向量竖坐标z同号时相等)或互补(选取法向量竖坐标z异号时互补),于是求二面角的大小可转化为求两个平面法向量的夹角,这样可避免了二面角的平面角的作图麻烦.n1n1n2n2....例7在四棱锥S-ABCD中∠DAB=∠ABC=90°,侧棱SA⊥底面AC,SA=AB=BC=1,AD=2,求二面角A-SD-C的大小.BCzxyABCDS.解:建立如图所示的空间直角坐标系O-xyz,则B(1,0,0),C(1,1,0),D(0,2,0),S(0,0,1).设平面SCD的法向量n1=(x,y,z),则由
得
n1=(1,1,2).而面SAD的法向量n2
=(1,0,0).于是二面角A-SD-C的大小θ满足
∴二面角A-SD-C的大小为..如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,.求面SCD与面SBA所成的二面角的余弦值.练习:SBACDzxy.设平面ADBCS.例........练习:...(2)解法2:设平面PBD的法向量为:n=(x,y,z)∵
=(1,0,-),
∴x-z=0,且-x-y-z=0∴x=z,y=-2z令z=1,得:n=(,-2,1)∵平面CBD的法向量为=(0,0,)∴又∵∴∴二面角P-BD-C的大小为:arccos1/4..解法二:设平面PAD的法向量为:n=(x,y,z)解得:取x=1,得n1=(1,2,-)同理:可得平面PAB的法向量为n2=(,0,1)∴n1n2=+0+=0∴平面PAD⊥平面PBD.3.求解空间中的距离(1)异面直线间的距离两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线a、b的公垂线的方向向量为n,这时分别在a、b上任取A、B两点,则向量在n上的正射影长就是两条异面直线a、b的距离.∴
即两异面直线间的距离等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.nabAB.例8在棱长为1的正方体ABCD-A1B1C1D1中,求异面直线AC1与BD间的距离.zxyABCDD1C1B1A1.解:建立如图所示的空间直角坐标系A-xyz,,则A(0,0,0),B(1,0,0),D(0,1,0),C1(1,1,1),设异面直线AC1与BD的公垂线的方向向量n=(x,y,z),则由,得
n=(-1,-1,2).
∵,∴异面直线AC1与BD间的距离.(2)点到平面的距离A为平面α外一点(如图),n为平面α的法向量,过A作平面α的斜线AB及垂线AH.
==.于是,点到平面的距离等于平面内外两点的向量和平面的法向量的数量积的绝对值与平面的法向量模的比值.nABHαθ.例9在直三棱柱ABC-A1B1C1中,AA1=,AC=BC=1,∠ACB=90°,求B1到面A1BC的距离.zxyCC1A1B1AB.解:以C为原点建立空间直角坐标系C-xyz,则C(0,0,0),A1(1,0,),B(0,1,0),B1(0,1,).设面A1BC的法向量n=(x,y,z),由得
n=(-,0,1).
∵,∴或∵,∴或∵,∴可见,选择平面内外两点的向量时,与平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《腔镜技术简介》课件
- 四下营养午餐教学设计及评课
- 新质生产力造纸
- 新质生产力与物流
- 韦格纳肉芽肿性巩膜炎的临床护理
- 人教版九年级化学上册《二氧化碳制取的研究》思维导图课件
- 2025年家装工程合同范本
- 沈阳英语三年级试卷及答案
- 山东聊城中考试卷及答案
- 2025果园土地承包经营权转让合同范本
- 实验室设备维护与保养试题及答案
- 2024年铁总服务有限公司招聘笔试真题
- 职业技术学院2024级安全技术与管理专业人才培养方案
- 广东省清远市2025届普通高中毕业年级高三教学质量检测物理试卷及答案(二)清远二模
- 2025届“皖南八校”高三第三次大联考物理试卷(含答案解析)
- 2025年4月广西壮族自治区贺州市中考二模语文试题(含答案)
- 教师资格笔试教育数字化转型的挑战与对策分析试题及答案
- 2025年保温杯抛光机项目可行性研究报告
- 2024年河北省中等职业教育对口高考畜牧兽医类真题试卷及参考答案-
- 2024年9月28日福建省事业单位统考《行政职业能力测试》真题及答案
- 运动素质知到课后答案智慧树章节测试答案2025年春浙江大学
评论
0/150
提交评论