2021-2022学年黑龙江齐齐哈尔普高联谊校高三下第一次测试数学试题含解析_第1页
2021-2022学年黑龙江齐齐哈尔普高联谊校高三下第一次测试数学试题含解析_第2页
2021-2022学年黑龙江齐齐哈尔普高联谊校高三下第一次测试数学试题含解析_第3页
2021-2022学年黑龙江齐齐哈尔普高联谊校高三下第一次测试数学试题含解析_第4页
2021-2022学年黑龙江齐齐哈尔普高联谊校高三下第一次测试数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,则的取值范围是()A. B. C. D.2.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.363.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A. B. C. D.4.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()A. B. C. D.5.已知数列满足,(),则数列的通项公式()A. B. C. D.6.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为()A. B. C. D.7.若,则的虚部是()A. B. C. D.8.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为()A. B. C. D.9.已知集合,则全集则下列结论正确的是()A. B. C. D.10.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A. B.C. D.11.函数在内有且只有一个零点,则a的值为()A.3 B.-3 C.2 D.-212.设集合,,若集合中有且仅有2个元素,则实数的取值范围为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为______.14.在平面直角坐标系中,已知点,,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_______.15.函数的定义域为__________.16.已知正数a,b满足a+b=1,则的最小值等于__________,此时a=____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为公差为d的等差数列,,,且,,依次成等比数列,.(1)求数列的前n项和;(2)若,求数列的前n项和为.18.(12分)已知三棱锥中,为等腰直角三角形,,设点为中点,点为中点,点为上一点,且.(1)证明:平面;(2)若,求直线与平面所成角的正弦值.19.(12分)已知函数.(1)若曲线存在与轴垂直的切线,求的取值范围.(2)当时,证明:.20.(12分)△ABC的内角的对边分别为,已知△ABC的面积为(1)求;(2)若求△ABC的周长.21.(12分)已知函数.(1)讨论的单调性;(2)曲线在点处的切线斜率为.(i)求;(ii)若,求整数的最大值.22.(10分)已知函数,.(1)当时,求不等式的解集;(2)若函数的图象与轴恰好围成一个直角三角形,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

对分类讨论,代入解析式求出,解不等式,即可求解.【详解】函数,由得或解得.故选:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.2.B【解析】

方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.3.C【解析】令圆的半径为1,则,故选C.4.C【解析】

画出直观图,由球的表面积公式求解即可【详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【点睛】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.5.A【解析】

利用数列的递推关系式,通过累加法求解即可.【详解】数列满足:,,可得以上各式相加可得:,故选:.【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力.6.C【解析】

根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得.故选:【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.7.D【解析】

通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.8.D【解析】

先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.9.D【解析】

化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,,因此,,,,故选:D【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.10.C【解析】

在等比数列中,由即可表示之间的关系.【详解】由题可知,等比数列中,且公比为2,故故选:C【点睛】本题考查等比数列求和公式的应用,属于基础题.11.A【解析】

求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,,在单调递增,且,在不存在零点;若,,在内有且只有一个零点,.故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.12.B【解析】

由题意知且,结合数轴即可求得的取值范围.【详解】由题意知,,则,故,又,则,所以,所以本题答案为B.【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

设以直线为渐近线的双曲线的方程为,再由双曲线经过抛物线焦点,能求出双曲线方程.【详解】解:设以直线为渐近线的双曲线的方程为,∵双曲线经过抛物线焦点,∴,∴双曲线方程为,故答案为:.【点睛】本题主要考查双曲线方程的求法,考查抛物线、双曲线简单性质的合理运用,属于中档题.14.【解析】

写出所在直线方程,求出圆心到直线的距离,结合题意可得关于的等式,求解得答案.【详解】解:直线的方程为,即.圆的圆心到直线的距离,由的面积是的面积的2倍的点,有且仅有一对,可得点到的距离是点到直线的距离的2倍,可得过圆的圆心,如图:由,解得.故答案为:.【点睛】本题考查直线和圆的位置关系以及点到直线的距离公式应用,考查数形结合的解题思想方法,属于中档题.15.【解析】

根据函数成立的条件列不等式组,求解即可得定义域.【详解】解:要使函数有意义,则,即.则定义域为:.故答案为:【点睛】本题主要考查定义域的求解,要熟练掌握张建函数成立的条件.16.3【解析】

根据题意,分析可得,由基本不等式的性质可得最小值,进而分析基本不等式成立的条件可得a的值,即可得答案.【详解】根据题意,正数a、b满足,则,当且仅当时,等号成立,故的最小值为3,此时.故答案为:3;.【点睛】本题考查基本不等式及其应用,考查转化与化归能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】

(1)利用等差数列的通项公式以及等比中项求出公差,从而求出,再利用等比数列的前项和公式即可求解.(2)由(1)求出,再利用裂项求和法即可求解.【详解】(1),且,,依次成等比数列,,即:,,,,,;(2),.【点睛】本题考查了等差数列、等比数列的通项公式、等比数列的前项和公式、裂项求和法,需熟记公式,属于基础题.18.(1)证明见解析;(2)【解析】

(1)连接交于点,连接,通过证,并说明平面,来证明平面(2)采用建系法以、、所在直线分别为、、轴建立空间直角坐标系,分别表示出对应的点坐标,设平面的一个法向量为,结合直线对应的和法向量,利用向量夹角的余弦公式进行求解即可【详解】证明:如图,连接交于点,连接,点为的中点,点为的中点,点为的重心,则,,,又平面,平面,平面;,,,,,,可得,又,则以、、所在直线分别为、、轴建立空间直角坐标系,则,,,,,,.设平面的一个法向量为,由,取,得.设直线与平面所成角为,则.直线与平面所成角的正弦值为.【点睛】本题考查线面平行的判定定理的使用,利用建系法来求解线面夹角问题,整体难度不大,本题中的线面夹角的正弦值公式使用广泛,需要识记19.(1)(2)证明见解析【解析】

(1)在上有解,,设,求导根据函数的单调性得到最值,得到答案.(2)证明,只需证,记,求导得到函数的单调性,得到函数的最小值,得到证明.【详解】(1)由题可得,在上有解,则,令,,当时,单调递增;当时,单调递减.所以是的最大值点,所以.(2)由,所以,要证明,只需证,即证.记在上单调递增,且,当时,单调递减;当时,单调递增.所以是的最小值点,,则,故.【点睛】本题考查了函数的切线问题,证明不等式,意在考查学生的综合应用能力和转化能力.20.(1)(2).【解析】试题分析:(1)由三角形面积公式建立等式,再利用正弦定理将边化成角,从而得出的值;(2)由和计算出,从而求出角,根据题设和余弦定理可以求出和的值,从而求出的周长为.试题解析:(1)由题设得,即.由正弦定理得.故.(2)由题设及(1)得,即.所以,故.由题设得,即.由余弦定理得,即,得.故的周长为.点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.21.(1)在上增;在上减;(2)(i);(ii)2【解析】

(1)求导求出,对分类讨论,求出的解,即可得出结论;(2)(i)由,求出的值;(ii)由(i)得所求问题转化为,恒成立,设,,只需,根据的单调性,即可求解.【详解】(1)当时,,即在上增;当时,,,,,即在上增;在上减;(2)(i),.(ⅱ),即,即,只需.当时,,在单调递增,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论