版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年湖南省邵阳市绥宁县第二职业中学高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.sin585°的值为A.
B.
C.
D.参考答案:C2.下列区间中,函数f(x)=|ln(x+2)|在其上为减函数的是(
).
A.(-∞,1]
B.
C.
D.参考答案:D3.已知A={(x,y)|x+y=1},B={(x,y)|x﹣y=5},则A∩B=()A.{3,﹣2} B.{x=3,y=﹣2} C.{(3,﹣2)} D.(3,﹣2)参考答案:C【考点】交集及其运算.【分析】联立A与B中两方程组成方程组,求出解即可得到两集合的交集.【解答】解:联立集合A与B中方程得:,解得:,则A∩B={(3,﹣2)},故选:C.4.幂函数f(x)=(m2﹣4m+4)x在(0,+∞)为减函数,则m的值为()A.1或3 B.1 C.3 D.2参考答案:C【考点】幂函数的性质.【分析】根据幂函数的定义和单调性求m即可.【解答】解:∵为幂函数∴m2﹣4m+4=1,解得m=3或m=1.由当x∈(0,+∞)时为减函数,则m2﹣6m+8<0,解得2<m<4.∴m=3,故选:C.5.的值为
(
)A.0
B.
C.
D.参考答案:B略6.设变量x,y满足约束条件,则目标函数z=5x+y的最大值为(A)2
(B)3
(C)4
(D)5参考答案:D略7.设,,,则大小关系(
)A.
B.
C.
D.参考答案:解析:,,8.数列满足,且,则首项等于
(
)
A.
B.
C.
D.参考答案:D略9.已知集合M={x|x<3},N={x|},则M∩N等于(
)A.?
B.{x|0<x<3} C.{x|-1<x<3}
D.{x|1<x<3}参考答案:C10.设m,n∈R,给出下列结论:①m<n<0则m2<n2;②ma2<na2则m<n;③<a则m<na;④m<n<0则<1.其中正确的结论有()A.②④ B.①④ C.②③ D.③④参考答案:A【考点】R3:不等式的基本性质.【分析】利用不等式的基本性质即可判断出正误.【解答】解:①m<n<0则m2>n2,因此①不正确.②ma2<na2,则a2>0,可得m<n,因此②正确;③<a,则m<na或m>na,因此不正确;④m<n<0,则<1,正确.其中正确的结论有②④.故选:A.【点评】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.如图,正六边形ABCDEF中,有下列四个命题:①+=2;②=2+2;③?=;④(?)=(?).其中真命题的代号是
(写出所有真命题的代号).参考答案:①②④【考点】9R:平面向量数量积的运算.【分析】利用向量的运算法则及正六边形的边、对角线的关系判断出各个命题的正误.【解答】解:①+==2,故①正确;②取AD的中点O,有=2=2(+)=2+2,故②正确;③∵?﹣?=(+)?﹣?=?≠0,故③错误;④∵=2,∴(?)?=2(?)?=2?(?),故④正确;故答案为:①②④.12.已知函数f(x)=tan(2x?),则f()=___________________,函数f(x)的最小正周期是_______________________参考答案:13.(5分)若直线m被两平行线l1:x﹣y+1=0与l2:x﹣y+3=0所截得的线段的长为2,则直线m的倾斜角为
.参考答案:15°或75°考点: 两条平行直线间的距离.专题: 计算题;直线与圆.分析: 由两平行线间的距离=,得直线m和两平行线的夹角为30°.再根据两条平行线的倾斜角为45°,可得直线m的倾斜角的值.解答: 由两平行线间的距离为=,直线m被平行线截得线段的长为2,可得直线m和两平行线的夹角为30°.由于两条平行线的倾斜角为45°,故直线m的倾斜角为15°或75°,故答案为:15°或75°.点评: 本题考查两平行线间的距离公式,两条直线的夹角公式,两角和差的正切公式,属于基础题.14.把函数y=sinx的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为.参考答案:y=sin(2x﹣)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】把图象上所有点的横坐标缩小到原来的,得到y=sin2x,再函数y=sinx的图象上所有点向右平移个单位,得到y=sin[2(x﹣)],写出要求的结果.【解答】解:把图象上所有点的横坐标缩小到原来的,得到y=sin2x,再函数y=sin2x的图象上所有点向右平移个单位,得到y=sin[2(x﹣)]=sin(2x﹣)对图象,∴所求函数的解析式为:y=sin(2x﹣).故答案为:y=sin(2x﹣).15.已知α、β∈(0,π),且cosα=,cosβ=,那么α+β=
.参考答案:【考点】两角和与差的余弦函数.【分析】利用同角三角函数的基本关系和α,β的范围求得sinα和sinβ的值,进而利用余弦的两角和公式求得cos(α+β)的值,进而根据α,β的范围求得(α+β)的值.【解答】解:∵α、β∈(0,π),且cosα=,cosβ=,∴sinα=,sinβ=,∴cos(α+β)=cosαcosβ﹣sinαsinβ=×﹣×=﹣,又∵α、β∈(0,π),∴α+β=.故答案是:.16.将图中阴影部分可用交、并、补运算表示为__________.参考答案:略17.一元二次不等式的解集为
.参考答案:
(2,3)略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(8分)已知直线经过两点,.(1)求直线的方程;(2)圆的圆心在直线上,并且与轴相切于点,求圆的方程.参考答案:(1)由已知,直线的斜率,------------2分所以,直线的方程为.
------------3分(2)因为圆的圆心在直线上,可设圆心坐标为,因为圆与轴相切于点,所以圆心在直线上,所以,
------------6分所以圆心坐标为,半径为1,所以,圆的方程为.------------8分19..已知数列{an}和{bn}满足,,,.(1)求an和bn;(2)记数列的前n项和为Tn,求Tn.参考答案:(1),;(2).【分析】(1)根据题干得到是等比数列,进而得到通项公式,将原式变形得到,累乘法得到数列通项;(2)错位相减求和即可.【详解】(1)∵,,∴,当时,,故;当时,,整理得,;(2)由(1)得:,∴,∴,∴,经化简整理得:.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.20.已知集合A={x|x2+3x﹣4≥0}
B={x|<1}
(1)求集合A、B;(2)求A∪B,(CRB)∩A.参考答案:【考点】交、并、补集的混合运算.【专题】计算题;不等式的解法及应用;集合.【分析】(1)解二次不等式和分式不等式,可得集合A、B;(2)再由集合交集,交集,补充的定义,可得A∪B,(CRB)∩A.【解答】解:(1)解x2+3x﹣4=0得:x=﹣4,或x=1,故集合A={x|x2+3x﹣4≥0}=(﹣∞,﹣4]∪[1,+∞),可化为:,故集合B={x|<1}=(﹣1,2),(2)A∪B=(﹣∞,﹣4]∪[1,+∞)∪(﹣1,2)=(﹣∞,﹣4]∪(﹣1,+∞),CRB=(﹣∞,﹣1]∪[2,+∞),∴(CRB)∩A=(﹣∞,﹣4]∪[2,+∞)【点评】本题考查的知识点是不等式的解法,集合的交集,并集,补集运算,难度中档.21.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围(3)若x∈[t,t+2],试求y=f(x)的最小值.参考答案:【考点】二次函数的性质.【分析】(1)根据二次函数f(x)的最小值为1,且f(0)=f(2)可得对称轴为x=1,可设f(x)=a(x﹣1)2+1,由f(0)=3,求出a的值即可;(2)f(x)在区间[2a,a+1]上不单调,则2a<1<a+1,解得即可;(3)通过讨论t的范围,得到函数的单调性,从而求出函数的最小值.【解答】解(1)由已知,f(0)=f(2)=3,可得对称轴为x=1,则函数的定点坐标为(1,1),设f(x)=a(x﹣1)2+1,a>0,由f(0)=3,得a=2,故f(x)=2x2﹣4x+3.(2)因为函数的对称轴为1,f(x)在区间[2a,a+1]上不单调对称轴在区间[2a,a+1]内,即2a<1<a+1,解得0<a<.
(3)当t≥1时,函数f(x)在[t,t+2]上单调递增,f(x)min=f(t)=2t2﹣4t+3.当t<1<t+2时,即﹣1<t<1时,f(x)min=1,当t+2≤1时,即t≤﹣1时,函数f(x)在[t,t+2]上单调递减,f(x)min=f(t+2)=2t2+4t+5,综上所述y=f(x)m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古代猎户的养家日常
- 独家代理合同范本
- 2024年度城市轨道交通施工安全合同
- 代办知识产权申请协议书(04版)
- 房子赠与合同
- 二零二四年智能仓储系统研发与实施合同
- 2024年度货物买卖合同(进口)2篇
- 二零二四年度农村义务教育学校修建合同
- 二零二四年度战略合作合同的合作领域和合作方式
- 劳动合同范本(2篇)
- 《饮料对人体的危害》课件
- 2024-2030年中国腐乳行业发展趋势及营销模式分析报告
- 手术室专科习题及答案
- 专题04 任务型阅读10道
- 2024年山东省公务员考试《行测》真题及答案解析
- 期中测试卷(1~4单元)(试题)2024-2025学年五年级上册数学北师大版
- 教师课题结题资料汇编培训
- 北师大版六年级上册数学期末考试试卷带答案
- 餐饮服务课件 学习任务3 餐巾折花技能(4)-餐巾折花综合实训
- 环保设备智能监控系统开发合同
- 北师大版小学数学六年级上册课时练习试题及答案(全册)
评论
0/150
提交评论