版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年浙江省宁波市金山中学高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知为虚数单位,若,则(
)A.
B.
C.
D.参考答案:D略2.双曲线x2﹣2y2=2的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±2x参考答案:A【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】将双曲线的方程化为标准方程,求得a,b,由渐近线方程为y=±x,即可得到所求.【解答】解:双曲线x2﹣2y2=2即为:﹣y2=1,即有a=,b=1,则渐近线方程为y=±x,即有y=±x.故选:A.【点评】本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.3.曲线(为自然对数的底数)在点处的切线与轴、轴所围成的三角形的面积为(
)A.
B.
C.
D.参考答案:B4.已知数列{an-},定直线l:(m+3)x-(2m+4)y-m-9=0,若(n,an)在直线l上,则数列{an}的前13项和为(
)A.10
B.21
C.39
D.78参考答案:C略5.在△ABC中,角A,B,C的对边分别是a,b,c,若,则A的大小是(
)A.
B.
C.
D.参考答案:C由正弦定理可得,,由sinC≤1,即有≤2,又≤2,当且仅当sinA=sinB,取得等号。故,,即有.故选:C.
6.一条长为2的线段,它的三个视图分别是长为的三条线段,则ab的最大值为
A.
B.
C.
D.3参考答案:C构造一个长方体,让长为2的线段为体对角线,由题意知,即,又,所以,当且仅当时取等号,所以选C.
7.已知且,则复数
A.必为实数
B.必为虚数C.是虚数但不一定是纯虚数
D.可能是实数,也可能是虚数参考答案:A8.如图所示的程序框图,若输入的n的值为1,则输出的k的值为(A)2(B)3(C)4(D)5参考答案:C略9.对任意,函数不存在极值点的充要条件是(
) A、 B、
C、或 D、或参考答案:A10.的值为A.
B.
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.设函数,其中对于任意的正整数(),如果不等式在区间有解,则实数的取值范围为
.参考答案:12.如图,△ABC内接于,AB=AC,直线MN切于点C,弦,AC与BD相交于点E.若AB=6,
BC=4,则DE=__________.参考答案:13.复数的共轭复数为.参考答案:14.过双曲线=1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若,则双曲线的离心率为
.参考答案:【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题设知|EF|=b,|PF|=2b,|PF′|=2a,过F点作x轴的垂线l,过P点作PD⊥l,则l为抛物线的准线,据此可求出P点的横坐标,后在Rt△PDF中根据勾股定理建立等式,由此能求出双曲线的离心率.【解答】解:∵|OF|=c,|OE|=a,OE⊥EF,∴|EF|=b,∵,∴E为PF的中点,|PF|=2b,又∵O为FF′的中点,∴PF′∥EO,∴|PF′|=2a,∵抛物线方程为y2=4cx,∴抛物线的焦点坐标为(c,0),即抛物线和双曲线右支焦点相同,过F点作x轴的垂线l,过P点作PD⊥l,则l为抛物线的准线,∴PD=PF′=2a,∴P点横坐标为2a﹣c,设P(x,y),在Rt△PDF中,PD2+DF2=PF2,即4a2+y2=4b2,4a2+4c(2a﹣c)=4(c2﹣b2),解得e=故答案为:.【点评】本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,同时考查抛物线的定义及性质,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.15.如图,设A、B、C、D为球O上四点,若AB、AC,AD两两互相垂直,且AB=AC=,AD=2,则OD与平面ABC所成的角为__________w。参考答案:;(或30°)略16.设函数y=f(x)是最小正周期为2的偶函数,它在区间[0,1]上的图象为如图所示的线段AB,则在区间[1,2]上f(x)=
.
参考答案:x;17.若的展开式中前三项的系数依次成等差数列,则展开式中项的系数为
参考答案:7三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求二面角B﹣AC﹣A1的余弦值.参考答案:(Ⅰ)证明:取AB中点O,连CO,OA1,A1B,∵AB=AA1,∠BAA1=60°,∴△A1AB为正三角形,∴A1O⊥AB,∵CA=CB,∴CO⊥AB,∵CO∩A1O=O,∴AB⊥平面COA1,∵A1C?平面COA1,∴AB⊥A1C.(Ⅱ)解:∵AB=CB=2,AB=AA1,CA=CB,∠BAA1=60°,∴CO=A1O==,∵A1C=,∴=,∴OC⊥A1O,∵OC∩AB=O,∴A1O⊥平面ABC,
------------------5分建立如图空间直角坐标系O﹣xyz,O(0,0,0),A(1,0,0),,C(0,0,),设平面AA1C的法向量为,则,,∴,∴=(,1,1),平面向量ACB的法向量=(0,1,0),cos<>==.∴二面角B﹣AC=A1的余弦值为.
12分19.
已知函数,,且在R上恒成立.(I)求a,c,d的值:(II)若,解不等式;
(ⅡI)是否存在实数m,使函数在区间上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由,
参考答案:略20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知2sin2A+sin(A﹣B)=sinC,且.(Ⅰ)求的值;(Ⅱ)若c=2,,求△ABC的面积.参考答案:【考点】余弦定理;正弦定理.【分析】(Ⅰ)根据三角形内角和定理sinC=sin(A+B),打开化解,根据正弦定理,可得的值;(Ⅱ)c=2,,由余弦定理求出a,b的值,根据△ABC的面积可得答案.【解答】解:(Ⅰ)由2sin2A+sin(A﹣B)=sinC,可得2sin2A+sin(A﹣B)=sin(A+B),可得:2sinAcosA=sinBcosA∵.∴cosA≠0.得2sinA=sinB,由正弦定理:2a=b,即=.(Ⅱ)已知c=2,,由余弦定理:得a2+b2﹣ab=4.又由(Ⅰ)可知:2a=b,从而解得:a=,b=那么:△ABC的面积=.21.已知函数f(x)=2lnx﹣ax+a(a∈R).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)≤0恒成立,证明:当0<x1<x2时,.参考答案:【考点】利用导数研究函数的单调性;函数单调性的性质.【分析】(I)利用导数的运算法则可得f′(x),对a分类讨论即可得出其单调性;(II)通过对a分类讨论,得到当a=2,满足条件且lnx≤x﹣1(当且仅当x=1时取“=”).利用此结论即可证明.【解答】解:(Ⅰ)求导得f′(x)=,x>0.若a≤0,f′(x)>0,f(x)在(0,+∞)上递增;若a>0,当x∈(0,)时,f′(x)>0,f(x)单调递增;当x∈(,+∞)时,f′(x)<0,f(x)单调递减.(Ⅱ)由(Ⅰ)知,若a≤0,f(x)在(0,+∞)上递增,又f(1)=0,故f(x)≤0不恒成立.若a>2,当x∈(,1)时,f(x)递减,f(x)>f(1)=0,不合题意.若0<a<2,当x∈(1,)时,f(x)递增,f(x)>f(1)=0,不合题意.若a=2,f(x)在(0,1)上递增,在(1,+∞)上递减,f(x)≤f(1)=0,合题意.故a=2,且lnx≤x﹣1(当且仅当x=1时取“=”).当0<x1<x2时,f(x2)﹣f(x1)=2ln﹣2(x2﹣x1)<2(﹣1)﹣2(x2﹣x1)=2(﹣1)(x2﹣x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 7 上课了 好好学 说课稿-2024-2025学年道德与法治一年级上册统编版
- 养植物(说课稿)-2024-2025学年科学二年级上册人教鄂教版
- 2025年湘师大新版五年级英语上册阶段测试试卷含答案
- 2025年教科新版七年级科学上册月考试卷含答案
- Unit 1 People Of Achievement Using Language 说课稿-2024-2025学年人教版(2019)高中英语选择性必修第一册
- 人教版历史与社会八下第七单元第5课《第二次工业革命》说课稿
- 2025年苏教版九年级生物下册月考试卷
- 第二单元第10课一、《制作生日蛋糕出现的动画》说课稿 2023-2024学年人教版初中信息技术八年级上册
- 2025年房屋按揭销售协议2篇
- 2025年华东师大版八年级数学下册月考试卷含答案
- 课题申报书:大中小学铸牢中华民族共同体意识教育一体化研究
- 岩土工程勘察课件0岩土工程勘察
- 《肾上腺肿瘤》课件
- 2024-2030年中国典当行业发展前景预测及融资策略分析报告
- 《乘用车越野性能主观评价方法》
- 幼师个人成长发展规划
- 2024-2025学年北师大版高二上学期期末英语试题及解答参考
- 批发面包采购合同范本
- 乘风化麟 蛇我其谁 2025XX集团年终总结暨颁奖盛典
- 2024年大数据分析公司与中国政府合作协议
- 一年级数学(上)计算题专项练习汇编
评论
0/150
提交评论