湖北省荆门市杨集中学2022高三数学理上学期期末试题含解析_第1页
湖北省荆门市杨集中学2022高三数学理上学期期末试题含解析_第2页
湖北省荆门市杨集中学2022高三数学理上学期期末试题含解析_第3页
湖北省荆门市杨集中学2022高三数学理上学期期末试题含解析_第4页
湖北省荆门市杨集中学2022高三数学理上学期期末试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省荆门市杨集中学2022高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,目标函数z=ax-y的可行域为四边形OACB(含边界),若是该目标函数z=ax-y的最优解,则a的取值范围是(

)A.

B.

C.

D.参考答案:A2.已知点P是双曲线右支上一点,分别为双曲线的左、右焦点,I为△的内心,若成立,则的值为(

A.

B.

C.

D.

参考答案:B略3.已知全集,集合,则

(

)A.

B.

C.

D.参考答案:A4.已知圆,点为直线上一动点,过点向圆引两条切线为切点,则直线经过定点.(

)A. B. C. D.参考答案:B对于点,根据题意得到四点共圆,从而以为直径的圆的方程为,将该圆与圆联立,两式相减得到相交弦所在直线方程.解答:设是圆的切线,是圆与以为直径的两圆的公共弦,可得以为直径的圆的方程为,

①又,②

①-②得,可得满足上式,即过定点,故选B.说明:本题考查直线与圆的位置关系,如直线与圆相切,以及两个圆相交的相交弦方程.5.命题“所有实数的平方都是正数”的否定为A.所有实数的平方都不是正数

B.有的实数的平方是正数C.至少有一个实数的平方不是正数

D.至少有一个实数的平方是正数参考答案:C全称命题的否定是特称命题.,所以“所有实数的平方都是正数”的否定是“至少有一个实数的平方不是正数”选C.6.设则

)(A)

(B)

(C)(D)参考答案:D7.已知三棱锥的底面是边长为的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为A.

B.

C.

D.

参考答案:C由正视图与俯视图可知,该几何体为正三棱锥,侧视图为,侧视图的高为,高为,所以侧视图的面积为。选C.8.函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<0参考答案:A【考点】函数的图象.【分析】根据函数的图象和性质,利用排除法进行判断即可.【解答】解:f(0)=d>0,排除D,当x→+∞时,y→+∞,∴a>0,排除C,函数的导数f′(x)=3ax2+2bx+c,则f′(x)=0有两个不同的正实根,则x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,方法2:f′(x)=3ax2+2bx+c,由图象知当当x<x1时函数递增,当x1<x<x2时函数递减,则f′(x)对应的图象开口向上,则a>0,且x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,故选:A9.复数,则对应的点所在的象限为A.第一象限

B.第二象限

C.第三象限

D.第四象限参考答案:D10.在复平面内,复数对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.曲线与直线及轴所围成的图形的面积是

.参考答案:略12.已知函数f(x)=x3+ax2+bx在x=1处有极值为10,则f(2)等于____.参考答案:2略13.已知是边长为1的正三角形,平面,且,则与平面所成角的正弦值为________.若点关于直线的对称点为,则直线与所成角的余弦值是________.参考答案:,;

14.设,则的最小值为

。参考答案:9略15.已知α,β为平面,m,n为直线,下列命题:①若m∥n,n∥α,则m∥α;

②若m⊥α,m⊥β,则α∥β;③若α∩β=n,m∥α,m∥β,则m∥n;④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的有

.(填写所有正确命题的序号)

参考答案:②③④16.已知f(x)、g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=2x+x,则f(1)+g(1)=.参考答案:【考点】函数奇偶性的性质.【专题】方程思想;定义法;函数的性质及应用.【分析】根据函数奇偶性的性质建立方程组关系进行求解即可.【解答】解:∵f(x)、g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=2x+x,∴f(﹣1)﹣g(﹣1)=2﹣1﹣1==,即f(1)+g(1)=,故答案为:.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质直接令x=﹣1是解决本题的关键.17.已知函数f(x)=﹣1的定义域是[a,b](a,b∈Z),值域是[0,1],则满足条件的整数数对(a,b)共有

个.参考答案:5【考点】函数的定义域及其求法.【专题】压轴题;数形结合.【分析】讨论x大于等于0时,化简f(x),然后分别令f(x)等于0和1求出对应的x的值,得到f(x)为减函数,根据反比例平移的方法画出f(x)在x大于等于0时的图象,根据f(x)为偶函数即可得到x小于0时的图象与x大于0时的图象关于y轴对称,可画出函数的图象,从函数的图象看出满足条件的整数对有5个.【解答】解:当x≥0时,函数f(x)=﹣1,令f(x)=0即﹣1=0,解得x=2;令f(x)=1即﹣1=1,解得x=0易知函数在x>0时为减函数,利用y=平移的方法可画出x>0时f(x)的图象,又由此函数为偶函数,得到x<0时的图象是由x>0时的图象关于y轴对称得来的,所以函数的图象可画为:根据图象可知满足整数数对的有(﹣2,0),(﹣2,1),(﹣2,2),(0,2),(﹣1,2)共5个.故答案为:5【点评】此题考查学生会利用分类讨论及数形结合的数学思想解集实际问题,掌握函数定义域的求法,是一道中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.参考答案:【考点】简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积?C2M?C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为?C2M?C2N=?1?1=.ρ【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.19.(本小题满分12分)已知△中,角,,的对边分别为,,,且,.(Ⅰ)若,求;(Ⅱ)若,求△的面积.参考答案:解:(Ⅰ)由已知,

整理得.

………2分

因为,所以

故,解得.

……………4分

由,且,得.

由,即,

解得.

………………6分

(Ⅱ)因为,又,所以,解得.…………9分

由此得,故△为直角三角形,,.

.……12分20.已知函数f(x)=e2x﹣1﹣2x﹣kx2.(1)当k=0时,求f(x)的单调区间;(2)若x≥0时,f(x)≥0恒成立,求k的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)当k=0时,求函数的导数,利用函数的单调性和导数之间的关系即可求f(x)的单调区间;(2)若x≥0时,f(x)≥0恒成立,求函数导数,讨论k的范围,结合函数的单调性研究最值即可求k的取值范围.【解答】解:(1)当k=0时,f(x)=e2x﹣1﹣2x,f'(x)=2e2x﹣2,…令f'(x)>0,则2e2x﹣2>0,解得:x>0,令f'(x)<0,则2e2x﹣2<0,解得:x<0,…所以,函数f(x)=e2x﹣1﹣2x的单调增区间为(0,+∞),单调减区间为(﹣∞,0).

….(2)由函数f(x)=e2x﹣1﹣2x﹣kx2,则f'(x)=2e2x﹣2kx﹣2=2(e2x﹣kx﹣1),令g(x)=e2x﹣kx﹣1,则g'(x)=2e2x﹣k.

…由x≥0,所以,①当k≤2时,g'(x)≥0,g(x)为增函数,而g(0)=0,所以g(x)≥0,即f'(x)≥0,所以f(x)在[0,+∞)上为增函数,而f(0)=0,所以f(x)≥0在[0,+∞)上恒成立.

…②当k>2时,令g'(x)<0,即2e2x﹣k<0,则.即g(x)在上为减函数,而g(0)=0,所以,g(x)在上小于0.即f'(x)<0,所以f(x)在上为减函数,而f(0)=0,故此时f(x)<0,不合题意.综上,k≤2.

…21.已知数列的首项,.(1)求证:数列为等比数列;(2)记,若,求最大正整数.(3)是否存在互不相等的正整数,使成等差数列且成等比数列,如果存在,请给出证明;如果不存在,请说明理由.参考答案:(3)假设存在,则,

………………10分∵,∴.

…………12分化简得:,

………13分∵,当且仅当时等号成立.

…………15分又互不相等,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论