版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省鞍山市第六十二中学2022高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图21-4所示的程序框图输出的结果是()图21-4A.6
B.-6
C.5
D.-5参考答案:C2.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A. B. C. D.参考答案:D【考点】简单空间图形的三视图.【专题】作图题.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.3.若函数f(x)=x+(x>2),在x=a处取最小值,则a=()A.1+ B.1+ C.3 D.4参考答案:C【考点】基本不等式.【分析】把函数解析式整理成基本不等式的形式,求得函数的最小值和此时x的取值.【解答】解:f(x)=x+=x﹣2++2≥4当x﹣2=1时,即x=3时等号成立.∵x=a处取最小值,∴a=3故选C4.从装有颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X,已知,则(
)A. B. C. D.参考答案:B【分析】由题意知,X~B(5,),由EX=53,知X~B(5,),由此能求出D(X).【详解】解:由题意知,X~B(5,),∴EX=53,解得m=2,∴X~B(5,),∴D(X)=5(1).故选:B.【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.5..已知两座灯塔A、B与一岛C的距离都是,灯塔A在岛C的北偏东,灯塔B在岛C的南偏东,则灯塔A与灯塔B的距离为(
)A、
B、
C、
D、
参考答案:B6.平面的一条斜线段长是它在平面内射影长的2倍,则斜线与平面所成的角的大小为(
)A.30°
B.60°
C.45°
D.120°
参考答案:B略7.已知双曲线的一条渐近线方程是,过其左焦点作斜率为2的直线l交双曲线C于A,B两点,则截得的弦长()A.
B.
C.10 D.参考答案:C8.在用反证法证明“在△ABC中,若∠C是直角,则∠A和∠B都是锐角”的过程中,应该假设()A.∠A和∠B都不是锐角 B.∠A和∠B不都是锐角C.∠A和∠B都是钝角 D.∠A和∠B都是直角参考答案:B【考点】R9:反证法与放缩法.【分析】根据用反证法证明数学命题的步骤,应先假设命题的反面成立,求出要证明题的否定,即为所求.【解答】解:用反证法证明数学命题时,应先假设命题的反面成立,而命题:“∠A和∠B都是锐角”的否定是∠A和∠B不都是锐角,故选:B.9.已知和是两个命题,若是的必要不充分条件,则是的(
)A.充分不必要条件
B.必要不充分条件C.充要条件
D.既不充分又不必要条件参考答案:A10.若过点P(1,)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.[,] B.[,] C.[,] D.[,]参考答案:D【考点】直线与圆相交的性质.【分析】根据直线的斜率分两种情况,直线l的斜率不存在时求出直线l的方程,即可判断出答案;直线l的斜率存在时,由点斜式设出直线l的方程,根据直线和圆有公共点的条件:圆心到直线的距离小于或等于半径,列出不等式求出斜率k的范围,可得倾斜角的范围.【解答】解:①当直线l的斜率不存在时,直线l的方程是x=1,此时直线l与圆相交,满足题意;②当直线l的斜率存在时,设直线l的方程为y﹣=k(x﹣1),即kx﹣y﹣k+=0,∵直线l和圆有公共点,∴圆心到直线的距离小于或等于半径,则≤1,解得k≥,∴直线l的倾斜角的取值范围是[,],故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.抛物线的焦点坐标为
参考答案:12.在约束条件下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于
.参考答案:【考点】简单线性规划.【专题】压轴题;数形结合;不等式的解法及应用.【分析】画出满足约束条件的可行域,再根据目标函数z=ax+by(a>0,b>0)的最大值为1,求出a,b的关系式,利用基本不等式,可求ab的最大值.【解答】解:约束条件对应的平面区域如图3个顶点是(1,0),(1,2),(﹣1,2),由图易得目标函数在(1,2)取最大值1,此时a+2b=1,∵a>0,b>0,∴由不等式知识可得:1≥∴ab,当且仅当a=,b=时,取等号∴ab的最大值等于故答案为:【点评】本题考查线性规划知识,考查数形结合的数学思想.用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键.13.已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为________.参考答案:略14.在等比数列中,若,则公比
,
。参考答案:
15.已知三个不等式:①ab<0;②->-;③bc>ad.以其中两个作为条件,余下的一个作为结论,则可以组成
个真命题.参考答案:316.空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.①若AC=BD,则四边形EFGH是
;
②若则四边形EFGH是
.参考答案:菱形;
矩形;17.高安二中高中年级早上7点早读,假设该校学生小x与小y在早上6:30﹣6:50之间到校且每人在该时间段的任何时间到校是等可能的,则小x比小y至少早5分钟到校的概率为.参考答案:【考点】几何概型.【专题】应用题;整体思想;定义法;概率与统计.【分析】设小x到校的时间为x,小y到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|0≤x≤20,0≤y≤20}是一个矩形区域,则小x比小y至少早5分钟到校事件A={(x,y)|y﹣x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.【解答】解:设小x到校的时间为x,小y到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|0≤x≤20,0≤y≤20}是一个矩形区域,对应的面积S=20×20=400,则小x比小y至少早5分钟到校事件A={x|y﹣x≥5}作出符合题意的图象,则符合题意的区域为△ADE,联立得,即D(15,20),联立得,即E(0,5),则S△ADE=×15×15=几何概率模型可知小张比小王至少早5分钟到校的概率为==.故答案为:啊啊【点评】本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知平面向量.(1)求证;(2)若存在不同时为零的实数和,使得向量,且,试求函数解析式;(3)根据(2)的结论,讨论关于的方程的解的情况.参考答案:
略19.(本小题满分13分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出。某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量的标准,为了确定一个较为合理的标准,必须先了解全市居民日常用水量的分布情况。现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:t),样本统计结果如下图表:
(I)分别求出n,a,b的值;
(II)若从样本中月均用水量在[5,6](单位:t)的5位居民中任选2人作进一步的调查研究,求月均用水量最多的居民被选中的概率(5位居民的月均用水量均不相等)参考答案:(Ⅰ)由频率分布直方图得月均用水量在的频率为0.25,即=0.25----------------------------2分又,---------------------------------------------------------4分----------------------------------------------------6分(Ⅱ)记样本中月均用水量在(单位:t)的5位居民为a,b,c,d,e,且不妨设e为月均用水量最多的居民.记月均用水量最多的居民被选中为事件,所以基本事件为:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共计10个基本事件--------10分事件包含的基本事件有(a,e),(b,e),(c,e),(d,e),共4个--------12分 所以月均用水量最多的居民被选中概率---------------------------13分20.在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)求A的大小;(2)若,,求△ABC的面积.参考答案:(1);(2)【分析】(1)利用正弦定理化简已知等式,整理后根据sinB0求出,即可确定出A的度数;(2)利用余弦定理列出关系式,把a,b,cosA的值代入求出c的值,再由b,sinA的值,利用三角形面积公式求出即可.【详解】(1)由正弦定理得,∵,∴,∴,∵,∴(2)∵,,,∴,解得或(舍),∴.【点睛】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.21.设函数y=f(x),对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy.(1)求f(0)的值;(2)若f(1)=1,求f(2),f(3),f(4)的值;(3)在(2)的条件下,猜想f(n)(n∈N*)的表达式并用数学归纳法证明.参考答案:【考点】抽象函数及其应用;数学归纳法.【分析】(1)利用特殊值法判断即可;(2)根据条件,逐步代入求解;(3)猜想结论,根据数学归纳法的证明步骤证明.【解答】解:(1)令x=y=0,得f(0+0)=f(0)+f(0)+2×0×0,得f(0)=0.…(2)由f(1)=1,得f(2)=f(1+1)=f(1)+f(1)+2×1×1=4.f(3)=f(2+1)=f(2)+f(1)+2×2×1=9.f(4)=f(3+1)=f(3)+f(1)+2×3×1=16.…(3)由(2)可猜想f(n)=n2,…
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江师范大学《气压与液压传动》2023-2024学年第一学期期末试卷
- 产学研协同育人机制心得体会发言
- 长春信息技术职业学院《商务计划》2023-2024学年第一学期期末试卷
- 使用开源软件减少软件许可费
- 产品功能技术演讲模板
- 保险市场应对策略模板
- 业务操作-2020年房地产经纪人《房地产经纪业务操作》真题汇编
- 社团参与与高中生活模板
- 农科技讲座模板
- 二零二五版养老机构设施改造及智能化升级合同3篇
- 做好八件事快乐过寒假-2024-2025学年上学期中学寒假家长会课件-2024-2025学年高中主题班会课件
- 【课件】寒假是用来超越的!课件 2024-2025学年高中上学期寒假学习和生活指导班会
- 2024-2025学年北师大版数学七年级上册期末练习卷
- 2025年山东兖矿集团公司招聘笔试参考题库含答案解析
- 燃气有限公司工程部管理制度汇编
- 2024年中国干粉涂料市场调查研究报告
- (自考)经济学原理中级(政经)课件 第二章 商品和货币
- ×××老旧小区改造工程施工组织设计(全面)
- 科创板知识题库试题及答案
- GB/T 3324-2024木家具通用技术条件
- 《材料合成与制备技术》课程教学大纲(材料化学专业)
评论
0/150
提交评论