版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市建瓯川石中学2021-2022学年高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.有50件产品,编号从1到50,现在从中抽取5件检验,用系统抽样确定所抽取的第一个样本编号为7,则第三个样本编号是A.37
B.27 C.17 D.12参考答案:B2.设,则三者的大小关系是(
)A. B. C. D.参考答案:C略3.已知双曲线(a>0,b>0)的一条渐近线方程是它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为().参考答案:B由题意可知,因此选B.4.与直线和圆都相切的半径最小的圆的方程是(
)A.
B.C.
D. 参考答案:A5.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是()A.﹣2 B.0 C.2 D.4参考答案:C【考点】利用导数求闭区间上函数的最值.【分析】由题意先对函数y进行求导,解出极值点,然后再根据函数的定义域,把极值点和区间端点值代入已知函数,判断函数在区间上的增减性,比较函数值的大小,求出最大值,从而求解.【解答】解:f'(x)=3x2﹣6x=3x(x﹣2),令f'(x)=0可得x=0或2(2舍去),当﹣1<x<0时,f'(x)>0,当0<x<1时,f'(x)<0,∴当x=0时,f(x)取得最大值为f(0)=2.故选C6.已知R上可导函数f(x)的图象如图所示,则不等式(x2﹣2x﹣3)f′(x)>0的解集为()A.(﹣∞,﹣2)∪(1,+∞)
B.(﹣∞,﹣2)∪(1,2)C.(﹣∞,﹣1)∪(﹣1,0)∪(2,+∞)D.(﹣∞,﹣1)∪(﹣1,1)∪(3,+∞)参考答案:D【考点】6A:函数的单调性与导数的关系.【分析】根据题意结合图象求出f′(x)>0的解集与f′(x)<0的解集,因此对原不等式进行化简与转化,进而得到原不等式的答案.【解答】解:由图象可得:当f′(x)>0时,函数f(x)是增函数,所以f′(x)>0的解集为(﹣∞,﹣1),(1,+∞),当f′(x)<0时,函数f(x)是减函数,所以f′(x)<0的解集为(﹣1,1).所以不等式f′(x)<0即与不等式(x﹣1)(x+1)<0的解集相等.由题意可得:不等式(x2﹣2x﹣3)f′(x)>0等价于不等式(x﹣3)(x+1)(x+1)(x﹣1)>0,所以原不等式的解集为(﹣∞,﹣1)∪(﹣1,1)∪(3,+∞),故选D.【点评】解决此类问题的关键是熟悉函数的单调性与导数的关系,以及掌握读图与识图的技巧再结合不等式的解法即可得到答案.7.在中,,,点在上且满足,则等于(
)A.
B.
C.
D.
参考答案:D8.甲、乙、丙、丁四人做相互传球练习,第一次甲传给其他三人中的一人,第二次由拿球者再传给其他三人中的一人,这样共传了4次,则第4次仍传回到甲的概率是
A. B.
C. D.
参考答案:A9.命题“?x∈R,使得x2+x+1>0”的否定是()A.?x0∈R,使得x02+x0+1>0 B.?x∈R,使得x2+x+1>0C.?x∈R,使得x2+x+1≤0 D.?x0∈R,使得x02+x0+1≤0参考答案:D【考点】命题的否定.【分析】根据已知中的原命题,结合全称命题否定的方法,可得答案.【解答】解:命题:“?x∈R,使得x2+x+1>0”的否定:?x0∈R,使得x02+x0+1≤0,故选:D.10.椭圆的两个焦点是,为椭圆上与不共线的任意一点,为的内心,延长交线段于点,则等于(
)A. B. C. D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.当时,不等式恒成立,则实数a的取值范围为
.参考答案:12.命题“,使”的否定是 ,若是假命题,则实数的取值范围为
。参考答案:,;(前空2分,后空3分)13.设x+y=1,x≥0,y≥0,则x2+y2的取值范围是.参考答案:[,1]【考点】直线与圆的位置关系.【专题】数形结合;数形结合法;圆锥曲线的定义、性质与方程.【分析】由式子的几何意义,数形结合可得.【解答】解:∵x+y=1,x≥0,y≥0表示线段AB,x2+y2表示线段AB上的点到原点的距离平方,数形结合可得最小值为=,最大值为OA或OB=1,故答案为:[,1].【点评】本题考查式子的最值,数形结合是解决问题的关键,属基础题.14.光线自点射到直线上的点后又被反射且反射线恰好过点,则点的坐标为
。参考答案:略15.设函数的导函数,则的值等于________参考答案:略16.有一批钢管长度为4米,要截成50厘米和60厘米两种毛坯,且按这两种毛坯数量比大于配套,怎样截最合理?________________参考答案:
50厘米2根,60厘米5根17.若的展开式中所有项的系数和为32,则含项的系数是
.(用数字作答)参考答案:-90
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.对数列,规定为数列的一阶差分数列,其中。对正整数k,规定为的k阶差分数列,其中。(1)
若数列首项,且满足,求数列的通项公式;(2)
对(1)中的数列,是否存在等差数列,使得对一切正整数都成立?若存在,求数列的通项公式;若不存在,请说明理由;(3)
令,设,若恒成立,求最小的正整数M的值。
参考答案:解析:(1)而可得
,,……2分是首项为,公差为的等差数列,,
()……4分(2)即:而又
所以
……6分=故可得
存在等差数列,使对一切正整数都成立。……8分(3)由(2)知
………①
………②
……10分①-②得:
……12分,递增,且。满足条件的最小的正整数M的值为6.
……14分19.已知抛物线:的焦点为,过点的直线交抛物线于(位于第一象限)两点.(1)若直线的斜率为,过点分别作直线的垂线,垂足分别为,求四边形的面积;(2)若,求直线的方程.参考答案:(1)由题意可得,又直线的斜率为,所以直线的方程为.与抛物线方程联立得,解之得,.所以点,的坐标分别为,.所以,,,所以四边形的面积为.(2)由题意可知直线的斜率存在,设直线的斜率为,则直线:.设,,由化简可得,所以,.因为,所以,所以,所以,即,解得.因为点位于第一象限,所以,则.所以的方程为.(备注:其他解法,酌情给分)20.如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.(Ⅰ)求证:AM⊥平面PBC;(Ⅱ)求二面角A﹣PC﹣B的余弦值;(Ⅲ)证明:在线段PC上存在点D,使得BD⊥AC,并求的值.参考答案:【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)根据线面垂直的判定定理即可证明AM⊥平面PBC;(Ⅱ)建立空间坐标系,求出平面的法向量,利用向量法即可求二面角A﹣PC﹣B的余弦值;(Ⅲ)根据向量关系,以及直线垂直,利向量法进行求解即可.【解答】证明:(Ⅰ)因为PA⊥平面ABC,BC?平面ABC,所以PA⊥BC.因为BC⊥AB,PA∩AB=A,所以BC⊥平面PAB.又AM?平面PAB,所以AM⊥BC.因为PA=AB,M为PB的中点,所以AM⊥PB.又PB∩BC=B,所以AM⊥平面PBC.(Ⅱ)如图,在平面ABC内,作AZ∥BC,则AP,AB,AZ两两互相垂直,建立空间直角坐标系A﹣xyz.则A(0,0,0),P(2,0,0),B(0,2,0),C(0,2,1),M(1,1,0).,,设平面APC的法向量为,则即令y=1,则z=﹣2.所以=(0,1,﹣2).由(Ⅰ)可知=(1,1,0)为平面的法向量,设,的夹角为α,则cosα=.因为二面角A﹣PC﹣B为锐角,所以二面角A﹣PC﹣B的余弦值为.(Ⅲ)设D(u,v,w)是线段PC上一点,且,(0≤λ≤1).即(u﹣2,v,w)=λ(﹣2,2,1).所以u=2﹣2λ,v=2λ,w=λ.所以.由,得.因为,所以在线段PC存在点D,使得BD⊥AC.此时=.【点评】本题主要考查空间位置关系的判断,以及利用向量法求二面角的大小以及空间线面垂直的判定,考查学生的推理能力.21.已知a为实数,f(x)=(x2﹣4)(x﹣a)(1)求导数f′(x);(2)若x=﹣1是f(x)的极值点,求f(x)在[﹣2,2]上的最大值和最小值.参考答案:【考点】利用导数研究函数的极值;利用导数求闭区间上函数的最值.【分析】(1)将f(x)的表达式展开,求出f(x)的导函数即可;(2)根据f′(﹣1)=0,求出a的值,从而求出函数f(x)的单调区间,求出函数的最大值和最小值即可.【解答】解:(1)由原式得f(x)=x3﹣ax2﹣4x+4a,∴f'(x)=3x2﹣2ax﹣4.(2)由f'(﹣1)=0得a=,此时有f(x)=(x2﹣4)(x﹣),f′(x)=3x2﹣x﹣4,由f'(x)=0得x=或x=﹣1,故f(x)在[﹣2,﹣1)递增,在(﹣1,)递减,在(,2]递增,又f()=﹣,f(﹣1)=,f(﹣2)=0,f(2)=0,所以f(x)在[﹣2,2]上的最大值为,最小值为﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年钢铁用大型刷辊项目投资价值分析报告
- 2024至2030年芝麻焦切片项目投资价值分析报告
- 2024至2030年甜乳清粉项目投资价值分析报告
- 2024至2030年中国多媒体音箱面板行业投资前景及策略咨询研究报告
- 2024至2030年梯形齿同步带项目投资价值分析报告
- 2024至2030年时尚贴身连裤袜项目投资价值分析报告
- 2024至2030年抗风湿液项目投资价值分析报告
- 2024至2030年中国PET仿真石纹贴膜行业投资前景及策略咨询研究报告
- 2024至2030年垂直表面除漆剂项目投资价值分析报告
- 2024至2030年2,4,6-三羟基苯乙酮项目投资价值分析报告
- 疫情盒饭配送合同模板
- 政府采购评审专家考试试题库(完整版)
- 易制毒化学品安全培训培训课件
- 上海市安全员-C3证(专职安全员-综合类)证考试题及答案
- 2024年度国际旅游文化节承办合同
- 糖尿病与骨质疏松症
- 高压电气设备预防性试验(电气设备1)
- 老年病科重点专科建设
- 《影响大学生课外羽毛球运动参与的因素研究》
- 2024年终尾牙活动
- 2024年新人教版三年级数学上册《第8单元第2课时 比较几分之一的大小》教学课件
评论
0/150
提交评论