版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市格致中学2022高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径,若该几何体的体积是,则它的表面积是(
).A.17π B.18π C.20π D.28π参考答案:A三视图复原该几何体是一个球去掉自身的后的几何体,∴,,∴表面积.故选.2.已知函数f(x)=|x+|-|x-|,若关于x的方程f(x)=2m有四个不同的实根,则实数m的取值范围是A.(0,2)
B.(2,+∞)
C.(1,+∞)
D.(0,1)参考答案:A3.不等式|–3|>1的解集是(
)(A)[,2)∪(6,+∞)
(B)(–∞,2)∪(6,+∞)
(C)(6,+∞)
(D)(–∞,2)参考答案:A4.过双曲线的左焦点作圆的切线,切点为E,延长FE交抛物线于点P,若E为线段FP的中点,则双曲线的离心率为(
)A.
B.
C.
D.参考答案:D5.工人月工资(元)依劳动生产率(千元)变化的回归直线方程为=60+90x,下列判断正确的是()A.劳动生产率为1000元时,工资为50元B.劳动生产率提高1000元时,工资提高150元C.劳动生产率提高1000元时,工资提高90元D.劳动生产率为1000元时,工资为90元参考答案:C【考点】线性回归方程.【专题】常规题型.【分析】根据所给的线性回归方程,当x增加1时,y要增加90元,当劳动效率增加1000元时,工资提高90元,这里的值是平均增加90元.【解答】解:∵回归直线方程为,∴当x增加1时,y要增加90元,∴当劳动效率增加1000元时,工资提高90元,故选C.【点评】本题考查线性回归方程的应用,解题的关键是看清题目中自变量的值每增加1个单位,y的值就平均增加90,注意平均一词.6.下面几种推理是类比推理的是(
)A.两条直线平行,同旁内角互补,如果∠和∠是两条平行直线的同旁内角,则∠+∠=1800
.由平面三角形的性质,推测空间四边形的性质
.某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.
.一切偶数都能被2整除,是偶数,所以能被2整除.参考答案:B7.已知函数的图像与轴切于点,则的极大值、极小值分别为(
).A.
,0
B.0,
C.
,0
D.0,参考答案:A略8.设等差数列{an}的前n项和为Sn,且满足S19>0,S20<0,则,,,…,中最大项为()A. B. C.D.参考答案:C【考点】等差数列的性质.【分析】由等差数列的前n项和的公式分别表示出S19>0,S20<0,然后再分别利用等差数列的性质得到a10大于0且a11小于0,得到此数列为递减数列,前10项为正,11项及11项以后为负,由已知的不等式得到数列的前1项和,前2项的和,…,前19项的和为正,前20项的和,前21项的和,…,的和为负,所以得到b11及以后的各项都为负,即可得到b10为最大项,即可得到n的值.【解答】解:由S19==19a10>0,得到a10>0;由S20==10(a10+a11)<0,得到a11<0,∴等差数列{an}为递减数列.则a1,a2,…,a10为正,a11,a12,…为负;S1,S2,…,S19为正,S20,S21,…为负,则<0,<0,…,<0,又S10>S1>0,a1>a10>0,得到>>0,则最大.故选C【点评】此题考查了等差数列的前n项和公式,等差数列的性质,以及数列的函数特性,数熟练掌握等差数列的性质及求和公式是解本题的关键.9.小华与另外4名同学进行“手心手背”游戏,规则是:5人同时随机选择手心或手背其中一种手势,规定相同手势人数更多者每人得1分,其余每人得0分.现5人共进行了3次游戏,记小华3次游戏得分之和为X,则EX为(
)A.
B.
C.
D.参考答案:B设0表示手背,1表示手心,用5为的二进制数表示所有可能的结果,其中第一位表示小华所出的手势,后四位表示其余四人的手势,如下表所示,其中标记颜色的部分为小华获胜的结果.由古典概型计算公式可知,每次比赛小华获胜的概率为,X可能的取值为0,1,2,3,该分布列为超几何分布,,,,,则数学期望:.本题选择B选项.
10.设复数z满足条件,那么的最大值是A.3 B. C.
D.4参考答案:D表示单位圆上的点,那么表示在单位圆上的点到的距离,求最大值转化为点到原点的距离加上圆的半径.点到原点的距离为3,所以最大值为4.
二、填空题:本大题共7小题,每小题4分,共28分11.抛物线上的点到直线的距离的最小值是
参考答案:略12.已知点是抛物线的准线与双曲线的两条渐近线所围成的三角形平面区域内(含边界)的任意一点,则的最大值为_
__..参考答案:13.若“使”是假命题,则实数的范围
.参考答案:略14.在数列中,,,则
______________参考答案:15.一枚伍分硬币连掷3次,只有1次出现正面的概率为_________参考答案:16.设f(x)=4x3+mx2+(m﹣3)x+n(m,n∈R)是R上的单调增函数,则m的值为.参考答案:6【考点】利用导数研究函数的单调性.【分析】由函数为单调增函数可得f′(x)≥0,故只需△≤0即可.【解答】解:根据题意,得f′(x)=12x2+2mx+m﹣3,∵f(x)是R上的单调增函数,∴f′(x)≥0,∴△=(2m)2﹣4×12×(m﹣3)≤0即4(m﹣6)2≤0,所以m=6,故答案为:6.17.命题?x∈R,x2﹣2x+4≤0的否定为
.参考答案:?x∈R,x2﹣2x+4>0【考点】命题的否定.【分析】根据全称命题的否定是特称命题,写出其否定命题即可.【解答】解:根据全称命题的否定是特称命题,∴命题?x∈R,x2﹣2x+4≤4的否定是:?x∈R,x2﹣2x+4>0.故答案是?x∈R,x2﹣2x+4>4.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的平分线所在直线的方程为y=0.(1)求点A的坐标;(2)若点B的坐标为(1,2),求点C的坐标.参考答案:解:(1)由……3分得∴A(-1,0).……6分(2)∵y=0是∠A的平分线,∴点B关于y=0的对称点B′(1,-2)在直线AC上,8分∴直线AC的方程为==-1,即y=-x-1. ……10分又∵BC的方程为y-2=-2(x-1),即y=-2x+4. ……12分由解得∴点C(5,-6). …………14分
19.已知z是复数,z+2i,均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围。参考答案:设z=x+yi(x,y∈R)∵z+2i=x+(y+2)i由题意得:y=-2
(3分)∵由题意得x=4
∴z=4-2i
(6分)∵(z+ai)2=(12+4a-a2)+8(a-2)i
(6分)由题意可知解得:2<a<6∴实数a的取值范围是(2,6)。
(12分)20.如图,已知长方形ABCD中,AB=2,AD=,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM(Ⅰ)求证:AD⊥BM(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为.参考答案:【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(Ⅰ)根据线面垂直的性质证明BM⊥平面ADM即可证明AD⊥BM(Ⅱ)建立空间坐标系,求出平面的法向量,利用向量法建立二面角的夹角关系,解方程即可.【解答】(1)证明:∵长方形ABCD中,AB=2,AD=,M为DC的中点,∴AM=BM=2,∴BM⊥AM.∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM?平面ABCM∴BM⊥平面ADM∵AD?平面ADM∴AD⊥BM;
(2)建立如图所示的直角坐标系,设,则平面AMD的一个法向量=(0,1,0),=+=(1﹣λ,2λ,1﹣λ),=(﹣2,0,0),设平面AME的一个法向量为=(x,y,z),则,取y=1,得x=0,z=,则=(0,1,),∵cos<,>==,∴求得,故E为BD的中点.【点评】本题主要考查空间线面垂直性质以及二面角的求解,建立坐标系,求出平面的法向量,利用向量法是解决本题的关键.综合考查学生的运算和推理能力.21.(本题满分12分)已知复数,=2,是虚部为正数的纯虚数。(1)求的模;(2)求复数。参考答案:解:(1)||=||||=||||=8;(2)是虚部为正数的纯虚数∴====设复数=()
解之得或∴略22.解关于x的不等式ax2﹣(2a+2)x+4>0.参考答案:【考点】一元二次不等式的解法.【专题】计算题;分类讨论;分类法;不等式的解法及应用.【分析】已知不等式左边分解因式后,分a=0与a≠0两种情况求出解集即可.【解答】解:不等式ax2﹣(2a+2)x+4>0,因式分解得:(ax﹣2)(x﹣2)>0,若a=0,不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 男式小包市场需求与消费特点分析
- 2024年度实验室通风系统设计与施工合同
- 白板笔市场发展预测和趋势分析
- 04版农业种植技术转让合同
- 2024年度城市垃圾分类处理服务合同
- 2024年度光伏发电项目合作开发合同标的
- 治疗过敏用滴鼻液市场发展预测和趋势分析
- 娱乐用喷气船市场需求与消费特点分析
- 04版展览中心地面装修材料供应合同
- 2024年度物业综合管理合同
- 大学会计生涯发展展示
- 2024年“312”新高考志愿填报指南
- (正式版)YBT 6163-2024 预应力混凝土用耐蚀螺纹钢筋
- 医院设备维保方案
- 小学科普社团活动计划
- 初中女生会议课件省公开课金奖全国赛课一等奖微课获奖课件
- 美国实时总统大选报告
- 2024年初中学业音乐科目水平考试题库及答案
- 铁路运输安全知识
- 云南冬天的树林-课件
- 2024中国通用技术集团总部招聘7人高频考题难、易错点模拟试题(共500题)附带答案详解
评论
0/150
提交评论