下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
决战2020年中考数学九年级三轮冲刺:《二次函数动点综合》(一)1.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+2经过点A,C.(1)求抛物线的解析式;(2)点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC于点E,连接PC,设点P的横坐标为m.①当△PCE是等腰三角形时,求m的值;②过点C作直线PD的垂线,垂足为F.点F关于直线PC的对称点为F′,当点F′落在坐标轴上时,请直接写出点P的坐标.2.如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.(1)求点P的坐标及直线AC的解析式;(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接FA、FC.求AF+CF的最小值;(3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形O′MNG,当点M与点A重合时停止平移.设平移的距离为t,正方形O′MNG的边MN与AC交于点R,连接O′P、O′R、PR,是否存在t的值,使△O′PR为直角三角形?若存在,求出t的值;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4)连接BC,DB,DC.(1)求抛物线的函数解析式;(2)△BCD的面积是否存在最大值,若存在,求此时点D的坐标;若不存在,说明理由;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.4.如图,在矩形OABC中,点O为原点,点A的坐标为(0,4),点C的坐标为(4,0),抛物线y=x2+bx+c经过点A、C,与AB交于点D.﹣(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.求S关于m的函数表达式;(3)抛物线y=﹣x2+bx+c的顶点为F,对称轴为直线l,当S最大时,在直线l上,是否存在点M,使以M、Q、D、F为顶点的四边形是平行四边形,若存在,请写出符合条件的点M的坐标;若不存在,请说明理由.5.如图1,抛物线y=ax2+bx﹣3经过A、B、C三点,已知点A(﹣3,0)、C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB下方的抛物线上一动点(不与A、B重合),①过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标.②如图2,连接AP.以AP为边作图示一侧的正方形APMN,当它恰好有一个顶点落在抛物线对称轴上时,求出对应的P点的坐标.6.如图,若二次函数y=x2﹣x﹣2的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于C点.(1)求A,B两点的坐标;(2)若P(m,﹣2)为二次函数y=x2﹣x﹣2图象上一点,求m的值.7.如图,二次函数y=x2+bx+c的图象与x轴相交于点A、B两点,与y轴相交于点C(0,﹣3),抛物线的对称轴为直线x=1.(1)求此二次函数的解析式;(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并证明你的结论.8.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年洗车店租赁合同全新升级版3篇
- 2025年度飞机零部件买卖合同附带安装与维护服务合同4篇
- 个性化房地产顾问服务协议2024版版
- 二零二五年度高科技产业园区招标文件编制及论文创新协议3篇
- 二零二五年度零食店收银员顾客满意度提升服务合同4篇
- 二零二五年度智能家居研发合同6篇
- 2025版煤炭运输合同-煤炭运输与环保合规服务协议4篇
- 2025年船舶用水泵购销及维护保养合同3篇
- 2025年度夹板材料环保认证合作合同4篇
- 二零二五版智能交通合同信用评价与智能监控服务协议3篇
- 上海纽约大学自主招生面试试题综合素质答案技巧
- 办公家具项目实施方案、供货方案
- 2022年物流服务师职业技能竞赛理论题库(含答案)
- 危化品安全操作规程
- 连锁遗传和遗传作图
- DB63∕T 1885-2020 青海省城镇老旧小区综合改造技术规程
- 高边坡施工危险源辨识及分析
- 中海地产设计管理程序
- 简谱视唱15942
- 《城镇燃气设施运行、维护和抢修安全技术规程》(CJJ51-2006)
- 项目付款审核流程(visio流程图)
评论
0/150
提交评论