版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市李家湾中学2022高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.方程至少有一个负的实根的充要条件是(
)
A.0<≤1
B.<1
C.≤1
D.0<≤1或<0参考答案:C2.给出下列四个图形,其中能表示从集合M到集合N的函数关系的有
(
)A.0个
B.1个
C.2个
D.3个参考答案:C3.如图,定义在[﹣2,2]的偶函数f(x)的图象如图所示,则方程f(f(x))=0的实根个数为()A.3 B.4 C.5 D.7参考答案:C【考点】根的存在性及根的个数判断.【分析】求出函数的值域,判断函数的零点的范围,然后求解方程f(f(x))=0的实根个数.【解答】解:定义在[﹣2,2]的偶函数f(x)的图象如图:函数是偶函数,函数的值域为:f(x)∈[﹣2,1],函数的零点为:x1,0,x2,x1∈(﹣2,﹣1),x2∈(1,2),令t=f(x),则f(f(x))=0,即f(t)=0可得,t=x1,0,x2,f(x)=x1∈(﹣2,﹣1)时,存在f[f(x1)]=0,此时方程的根有2个.x2∈(1,2)时,不存在f[f(x2)]=0,方根程没有根.f[f(0)]=f(0)=f(x1)=f(x2)=0,有3个.所以方程f(f(x))=0的实根个数为:5个.故选:C.【点评】本题考查函数的零点以及方程根的关系,零点个数的判断,考查数形结合以及计算能力.4.定义在R上的函数f(x)是偶函数且,当x∈时,,则的值为A.
B.
C.
D.参考答案:A∵,∴,又函数为偶函数,∴.选A.
5..点A(x,y)是210°角终边上异于原点的一点,则值为(
)A.
B.-
C.
D.-参考答案:C略6.已知集合A=,B=,则=(
)
A.(0,1)
B.(0,)
C.(,1)
D.
参考答案:B7.下列函数中,在其定义域内与函数有相同的奇偶性和单调性的是(
)A.
B.
C.
D.参考答案:B,奇函数,在上单调递增;A:,奇函数,在分别单调递增;B:,奇函数,在上单调递增;C:,偶函数,在单调递减,单调递增;D:,非奇非偶函数,在上单调递增;所以与原函数有相同奇偶性和单调性的是B。故选B。
8.lg2+lg5=()A.10 B.2 C.1 D.0参考答案:C【考点】对数的运算性质.【分析】利用对数的运算性质即可得出.【解答】解:原式=lg10=1.故选:C.9.生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上。”这就是著名的欧拉线定理,在△ABC中,O,H,G分别是外心、垂心和重心,D为BC边的中点,下列四个结论:(1);(2);(3);(4)正确的个数为(
)A.1
B.2
C.3
D.4参考答案:D中,分别是外心、垂心和重心,,
画出图形,如图所示;
对于(1),根据欧拉线定理得,选项(1)正确;
对于(2),根据三角形的重心性质得,选项(2)正确;
对于(3),选项(3)正确;
对于(4),过点作,垂足为,则的面积为同理选项(4)正确.
故选D.
10.在△ABC中,A(1,4)、B(4,1)、C(0,-4),P为△ABC所在平面一动点,则的最小值是
(
)
A.
B.
C.
D.
参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.某班有60名学生,现要从中抽取一个容量为5的样本,采用系统抽样法抽取,将全体学生随机编号为:01,02,……,60,并按编号顺序平均分为5组(1-5号,6-10号…),若第二有抽出的号码为16,则第四组抽取的号码为___________________.参考答案:40略12.已知角的终边上有一点的坐标是,则的值是______.参考答案:,【分析】由题意,利用任意角的三角函数的定义,以及诱导公式,即可求得的值.【详解】解:角的终边上有一点的坐标是,,又在第四象限,故,,故答案为:,.【点睛】本题主要考查诱导公式,任意角的三角函数的定义,熟记定义即可,属于基础题.13.函数的最大值为________.参考答案:略14.函数的最小正周期是_________.参考答案:B略15.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.①A′C⊥BD;②∠BA′C=90°;③四面体A′BCD的体积为.参考答案:②③若,则平面,则,显然矛盾,故①错误;平面平面,平面,,又平面,,故②正确;四面体的体积为,故③正确.综上,结论正确的是②③.
16.对任意两实数,,定义运算“*”如下:则函数的值域为
.参考答案:(-∞,0]由题意可得:运算“?”定义的实质就是取两者之间的最小值,若,解得,此时f(x)=log2x,可得,此时函数的值域为,若,解得x≥1,此时,且,可得,,综上可得,函数的值域为:(?∞,0].
17.若扇形的周长为10,半径为2,则扇形的面积为__________.参考答案:6设扇形弧长为,因为扇形的周长为,半径为,则,扇形面积为,故答案为.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)判断函数f(x)=x3+x的奇偶性.(2)如图是函数f(x)=x3+x的图象的一部分,你能根据f(x)的奇偶性画出它在y轴左边的图象吗?参考答案:【考点】函数奇偶性的判断;函数奇偶性的性质.【分析】(1)根据函数奇偶性的定义即可判断函数f(x)=x3+x的奇偶性.(2)根据奇函数关于原点对称的性质进行作图即可.【解答】解:(1)∵f(x)=x3+x,∴f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),则函数f(x)为奇函数.(2)∵函数f(x)为奇函数,∴图象关于原点对称,则对应的图象为:19.设函数(且)是定义域为R的奇函数.(1)求实数k的值;(2)若,判断函数f(x)的单调性,并简要说明理由;(3)在(2)的条件下,若对任意的,存在使得不等式成立,求实数a的取值范围.参考答案:(1)……………….…2分………………3分此时,经检验是奇函数.………4分(注:用做,不检验扣1分;用奇函数定义做可以不用检验)(2)….…..6分…..8分………..….9分(用定义证明亦可)(3)……11分………………...13分…………………..….15分20.如图,已知长方形ABCD中,AB=2AD,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;(2)若点E是线段DB上的中点,四棱锥D﹣ABCM的体积为V,求三棱锥E﹣ADM的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【分析】(1)由题意可得BM⊥AM,再由平面ADM⊥平面ABCM,结合面面垂直的性质可得BM⊥平面ADM,从而得到AD⊥BM;(2)直接利用等体积法求得三棱锥E﹣ADM的体积.【解答】(1)证明:∵长方形ABCD中,AB=2AD,M为DC的中点,∴AM=BM,则BM⊥AM,∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM?平面ABCM,∴BM⊥平面ADM,∵AD?平面ADM,∴AD⊥BM;(2)解:当E为DB的中点时,∵,∴===.21.已知圆O:x2+y2=4,圆O与x轴交于A,B两点,过点B的圆的切线为l,P是圆上异于A,B的一点,PH垂直于x轴,垂足为H,E是PH的中点,延长AP,AE分别交l于F,C.(1)若点P(1,),求以FB为直径的圆的方程,并判断P是否在圆上;(2)当P在圆上运动时,证明:直线PC恒与圆O相切.参考答案:【考点】直线和圆的方程的应用;圆的切线方程.【分析】(1)先确定直线AP的方程为,求得F(2,),确定直线AE的方程为y=(x+2),求得C(2,),由此可得圆的方程;(2)设P(x0,y0),则E(x0,),求得直线AE的方程,进而可确定直线PC的斜率,由此即可证得直线PC与圆O相切.【解答】(1)证明:由P(1,),A(﹣2,0)∴直线AP的方程为.令x=2,得F(2,).由E(1,),A(﹣2,0),则直线AE的方程为y=(x+2),令x=2,得C(2,).∴C为线段FB的中点,以FB为直径的圆恰以C为圆心,半径等于.∴圆的方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国川菜餐饮行业资本规划与股权融资战略制定与实施研究报告
- 2025-2030年中国新型烟草行业商业模式创新战略制定与实施研究报告
- 建设工程资料归档规范
- 2024年月亮湾教案
- 石门县党建知识培训课件
- 吉林省扶余市(一实验、二实验)2023-2024学年九年级上学期期末化学测试卷
- 现代企业制度的局限性与大型企业经营模式
- 二零二五年度废弃塑料清运及资源化利用合同3篇
- 医院医患沟通技巧培训
- 2025版二零二五年度智能家居研发工程师劳动合同书3篇
- 2023年非标自动化工程师年度总结及来年计划
- 2023-2024学年甘肃省嘉峪关市酒钢三中高三上数学期末学业质量监测试题含解析
- 水利机械施工方案
- 悬挑式脚手架验收记录表
- 主变压器试验报告模板
- 电动叉车安全操作规程
- 静钻根植桩施工组织设计
- 工程精细化管理
- 柴油供货运输服务方案
- 2022年长春市中小学教师笔试试题
- 肉牛肉羊屠宰加工项目选址方案
评论
0/150
提交评论