2022年湖南省长沙市望岳中学高二数学文模拟试题含解析_第1页
2022年湖南省长沙市望岳中学高二数学文模拟试题含解析_第2页
2022年湖南省长沙市望岳中学高二数学文模拟试题含解析_第3页
2022年湖南省长沙市望岳中学高二数学文模拟试题含解析_第4页
2022年湖南省长沙市望岳中学高二数学文模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年湖南省长沙市望岳中学高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数在(1,2)上有最大值无最小值,则实数a的取值范围为(

)A. B. C. D.参考答案:C分析:函数在上有最大值无最小值,则极大值在之间,一阶导函数有根在,且左侧函数值小于0,右侧函数值大于0,列不等式求解详解:函数在上有最大值无最小值,则极大值在之间,设的根为,极大值点在处取得则解得,故选C。点睛:极值转化为最值的性质:1、若上有唯一的极小值,且无极大值,那么极小值为的最小值;2、若上有唯一的极大值,且无极小值,那么极大值为的最大值;2.两人约定在8点到9点之间相见,且先到者必须等迟到者40分钟方可离去,则两人在约定时间内能相见的概率是

)A.

B.

C. D.参考答案:B略3.若,则下列结论不成立的是(

A.

B.

C.

D.参考答案:B略4.设变量x,y满足约束条件,则目标函数z=2x+3y的最小值为 ().A.6

B.7

C.8

D.23参考答案:B略5.法国数学家费马观察到,,,都是质数,于是他提出猜想:任何形如N*)的数都是质数,这就是著名的费马猜想.半个世纪之后,善于发现的欧拉发现第5个费马数不是质数,从而推翻了费马猜想,这一案例说明

A.归纳推理,结果一定不正确

B.归纳推理,结果不一定正确

C.类比推理,结果一定不正确

C.类比推理,结果不一定正确参考答案:B6.在△ABC中,角A,B,C的对边分别为a,b,c,若(a2+c2-b2)tanB=ac,则角B的值为

(

)A.

B.

C.或

D.或参考答案:D7.对任意的x,y∈(0,+∞),不等式ex+y﹣4+ex﹣y+4+6≥4xlna恒成立,则正实数a的最大值是()A. B.e C.e D.2e参考答案:A【考点】函数恒成立问题;利用导数求参数的范围.【分析】通过参数分离,利用基本不等式放缩可知问题转化为2lna≤在x>0时恒成立,记g(x)=,二次求导并结合单调性可知当x=4时g(x)取得最小值g(4)=1,进而计算即得结论.【解答】解:设f(x)=ex+y﹣4+ex﹣y+4+6,不等式4xlna≤ex+y﹣4+ex﹣y+4+6恒成立,即为不等式4xlna≤f(x)恒成立.即有f(x)=ex(ey﹣4+e﹣(y﹣4))+6≥6+2ex(当且仅当ey﹣4=e﹣(y﹣4),即y=0时,取等号),由不等式ex+y﹣4+ex﹣y+4+6≥4xlna恒成立,只需要4xlna≤6+2ex﹣4,即有2lna≤在x>0时恒成立,令g(x)=,g′(x)=,令g′(x)=0,即(x﹣1)ex﹣4=3,令h(x)=(x﹣1)ex﹣4,(x>0),h′(x)=xex﹣4>0,∵x>0,ex﹣4>0,∴h′(x)>0,∴h(x)在(0,+∞)上单调递增,又∵h(4)=3,即有(x﹣1)ex﹣4=3的根为4,∴当x>4时g(x)递增,当0<x<4时g(x)递减,∴当x=4时,g(x)取得最小值g(4)=1,∴2lna?1,lna?,∴0<a?,(当x=2,y=0时,a取得最大值),故选A.【点评】本题考查不等式恒成立问题注意转化为求函数的最值问题,运用参数分离和构造函数运用导数判断单调性是解题的关键,考查计算能力,属于中档题.8.椭圆的左右焦点分别为,点在第一象限,且在椭圆C上,点在第一象限且在椭圆C上,满足,则点的坐标为(

A.

B.

C.

D.参考答案:A略9.函数y=的定义域为A,全集为R,则?RA为(

)A.(,1]B.∪(1,+∞)D.(﹣∞,]∪参考答案:C10.下列求导运算正确的是()A.(3x)′=x?3x﹣1B.(2ex)′=2ex(其中e为自然对数的底数)C.(x2)′=2xD.()′=参考答案:B【考点】63:导数的运算.【分析】根据导数的运算法则和基本导数公式求导即可.【解答】解:(3x)′=ln3?3x,故A错误,(2ex)′=2ex,正确,(x2)′=2x﹣,故C错误,()′=,故D错误,故选:B二、填空题:本大题共7小题,每小题4分,共28分11.设F1、F2为双曲线的两个焦点,点P在双曲线上满足∠F1PF2=90°,那么△F1PF2的面积是______________.参考答案:1略12.已知为等差数列,,,为其前n项和,则使达到最大值的n等于

.参考答案:613.若实数x,y满足(x+5)2+(y-12)2=196,则x2+y2的最小值是________.参考答案:114.某班有名学生,一次考试的数学成绩服从正态分布,已知,估计该班学生成绩在以上的人数为 人。参考答案:15.在中,已知,则

.参考答案:略16.已知等差数列共有项,其中奇数项和为290,偶数项和为261,则参考答案:29略17.设函数f(x)=,则f[f(﹣1)]=_;若函数f(x)与y=k存在两个交点,则实数k的取值范围是.参考答案:﹣2;(0,1]考点: 函数的图象;函数的值;函数的零点与方程根的关系.

专题: 函数的性质及应用.分析: 利用分段函数求解函数值即可.解答: 解:函数f(x)=,则f(﹣1)=4﹣1,f[f(﹣1)]=f(4﹣1)=log24﹣1=﹣2;函数f(x)与y=k的图象为:两个函数存在两个交点,则实数k的取值范围:0<k≤1.故答案为:﹣2;(0,1].点评: 本题考查函数的值的求法,函数的图象以及函数的零点的求法,考查计算能力.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知不等式ax2-3x+6>4的D解集为{x|x<1或x>b}.(1)求a,b的值;(2)当时,解不等式ax2-(ac+b)x+bc<0.参考答案:(1)因为不等式ax2-3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,b>1且a>0.由根与系数的关系,得4分(2)不等式ax2-(ac+b)x+bc<0,即x2-(2+c)x+2c<0,即(x-2)(x-c)<0.5分因为c>2,所以不等式(x-2)(x-c)<0的解集为{x|2<x<c}.19.已知函数f(x)=ax3+bx2﹣3x(a,b∈R),曲线y=f(x)在点(1,f(1))处的切线方程为y=-2.(1)求函数f(x)的解析式;(2)若对于[-2,2]上任意x1,x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.参考答案:(1)由题意,利用导函数的几何含义及切点的实质建立a,b的方程,然后求解即可;(2)由题意,对于定义域内任意自变量都使得|f(x1)﹣f(x2)|≤c,可以转化为求函数在定义域下的最值即可得解;(3)由题意,若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解.解:(1)f'(x)=3ax2+2bx﹣3.根据题意,得即解得所以f(x)=x3﹣3x.(2)令f'(x)=0,即3x2﹣3=0.得x=±1.列表如下:所以当x∈[﹣2,2]时,f(x)max=2,f(x)min=﹣2.因此对于[﹣2,2]上的任意x1,x2,都有|f(x1)﹣f(x2)|≤|f(x)max﹣f(x)min|=4,所以c≥4.所以c的最小值为4.(3)因为点M(2,m)(m≠2)不在曲线y=f(x)上,所以可设切点为(x0,y0).则y0=x03﹣3x0.因为f'(x0)=3x02﹣3,所以切线的斜率为3x02﹣3.则3x02﹣3=,即2x03﹣6x02+6+m=0.因为过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,所以方程2x03﹣6x02+6+m=0有三个不同的实数解.所以函数g(x)=2x3﹣6x2+6+m有三个不同的零点.则g'(x)=6x2﹣12x.令g'(x)=0,则x=0或x=2.当x∈(﹣∞,0)时,g′(x)>0,函数g(x)在此区间单调递增;当x∈(0,2)时,g′(x)<0,函数g(x)在此区间单调递减;所以,函数g(x)在x=0处取极大值,在x=2处取极小值,有方程与函数的关系知要满足题意必须满足:,即,解得﹣6<m<2.20.如图,已知圆C的方程为:x2+y2+x﹣6y+m=0,直线l的方程为:x+2y﹣3=0.(1)求m的取值范围;(2)若圆与直线l交于P、Q两点,且以PQ为直径的圆恰过坐标原点,求实数m的值.参考答案:【考点】直线与圆的位置关系.【分析】(1)将圆的方程化为标准方程:,若为圆,须有,解出即可;(2)设点P(x1,y1),Q(x2,y2),由题意得OP、OQ所在直线互相垂直,即kOP?kOQ=﹣1,亦即x1x2+y1y2=0,根据P、Q在直线l上可变为关于y1、y2的表达式,联立直线方程、圆的方程,消掉x后得关于y的二次方程,将韦达定理代入上述表达式可得m的方程,解出即可;【解答】解:(1)将圆的方程化为标准方程为:,依题意得:,即m<,故m的取值范围为(﹣∞,);(2)设点P(x1,y1),Q(x2,y2),由题意得:OP、OQ所在直线互相垂直,则kOP?kOQ=﹣1,即,所以x1x2+y1y2=0,又因为x1=3﹣2y1,x2=3﹣2y2,所以(3﹣2y1)(3﹣2y2)+y1y2=0,即5y1y2﹣6(y1+y2)+9=0①,将直线l的方程:x=3﹣2y代入圆的方程得:5y2﹣20y+12+m=0,所以y1+y2=4,,代入①式得:,解得m=3,故实数m的值为3.21.已知以点为圆心的圆与直线相切,过点的直线与圆相交于两点,是的中点,.(1)求圆的标准方程;(2)求直线的方程.参考答案:(1)设圆的半径为,因为圆与直线相切,∴,∴圆的方程为.(2)①当直线与轴垂直时,易知符合题意;②当直线与轴不垂直时,设直线的方程为,即,连接,则,∵,∴,则由得,∴直线为:,故直线的方程为或.22.如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论