四川省平昌2023年中考数学最后冲刺浓缩精华卷含解析及点睛_第1页
四川省平昌2023年中考数学最后冲刺浓缩精华卷含解析及点睛_第2页
四川省平昌2023年中考数学最后冲刺浓缩精华卷含解析及点睛_第3页
四川省平昌2023年中考数学最后冲刺浓缩精华卷含解析及点睛_第4页
四川省平昌2023年中考数学最后冲刺浓缩精华卷含解析及点睛_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.5 B.10 C.10 D.152.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为()A. B.C. D.3.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为()A.4 B.3 C. D.4.如图,AB∥CD,那么()A.∠BAD与∠B互补 B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补5.下列各数是不等式组的解是()A.0 B. C.2 D.36.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=的图象无交点,则有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<07.用加减法解方程组时,若要求消去,则应()A. B. C. D.8.如图所示的几何体,上下部分均为圆柱体,其左视图是()A. B. C. D.9.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为()A.(2,1) B.(1,2) C.(1,3) D.(3,1)10.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)二、填空题(本大题共6个小题,每小题3分,共18分)11.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.12.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.13.8的立方根为_______.14.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.15.△ABC的顶点都在方格纸的格点上,则sinA=_▲.16.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.三、解答题(共8题,共72分)17.(8分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.求k和b的值;求△OAB的面积.18.(8分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.学员培训时段培训学时培训总费用小明普通时段206000元高峰时段5节假日时段15小华普通时段305400元高峰时段2节假日时段8(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元①求y与x之间的函数关系式,并确定自变量x的取值范围;②小陈如何选择培训时段,才能使得本次培训的总费用最低?19.(8分)清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?20.(8分)如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及PA,PB的长.21.(8分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.22.(10分)如图,△ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F;(1)求证:DE=CF;(2)若∠B=60°,求EF的长.23.(12分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.24.已知动点P以每秒2

cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6

cm,试回答下列问题:(1)图(1)中的BC长是多少?(2)图(2)中的a是多少?(3)图(1)中的图形面积是多少?(4)图(2)中的b是多少?

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四边形EFGH=2E′G=10,故选B.【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.2、B【解析】

根据第二象限中点的特征可得:,解得:.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征3、C【解析】

设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.【详解】设I的边长为x根据题意有解得或(舍去)故选:C.【点睛】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.4、C【解析】

分清截线和被截线,根据平行线的性质进行解答即可.【详解】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.5、D【解析】

求出不等式组的解集,判断即可.【详解】,由①得:x>-1,由②得:x>2,则不等式组的解集为x>2,即3是不等式组的解,故选D.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.6、D【解析】当k1,k2同号时,正比例函数y=k1x与反比例函数y=的图象有交点;当k1,k2异号时,正比例函数y=k1x与反比例函数y=的图象无交点,即可得当k1k2<0时,正比例函数y=k1x与反比例函数y=的图象无交点,故选D.7、C【解析】

利用加减消元法消去y即可.【详解】用加减法解方程组时,若要求消去y,则应①×5+②×3,

故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8、C【解析】试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.考点:简单组合体的三视图.9、D【解析】

过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【点睛】本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.10、A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、10%.【解析】

设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.【详解】设平均每次降价的百分率为,根据题意列方程得,,解得,(不符合题意,舍去),答:这个百分率是.故答案为.【点睛】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.12、【解析】根据弧长公式可得:=,故答案为.13、2.【解析】

根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.14、1【解析】

首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是19故答案为:19【点睛】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.15、【解析】

在直角△ABD中利用勾股定理求得AD的长,然后利用正弦的定义求解.【详解】在直角△ABD中,BD=1,AB=2,则AD===,则sinA===.故答案是:.16、250【解析】

从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可得圆柱的半径和高,易求体积.【详解】该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).答:立体图形的体积为250π立方单位.故答案为250π.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.三、解答题(共8题,共72分)17、(1)k=10,b=3;(2).【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴当y=0时,x=-3,∴OB=3∴S=×3×5=7.5考点:一次函数与反比例函数的综合问题.18、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=时,y有最小值,此时y最小=-60×+7200=6400(元).【解析】

(1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解;(2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围;②根据一次函数的性质结合自变量的取值范围即可求解.【详解】(1)由题意,得,解得,故a,b的值分别是120,180;(2)①由题意,得y=120x+180(40-x),化简得y=-60x+7200,∵普通时段的培训学时不会超过其他两个时段总学时的,∴x≤(40-x),解得x≤,又x≥0,∴0≤x≤;②∵y=-60x+7200,k=-60<0,∴y随x的增大而减小,∴x取最大值时,y有最小值,∵0≤x≤;∴x=时,y有最小值,此时y最小=-60×+7200=6400(元).【点睛】本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键.19、每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田亩.【解析】

设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解.【详解】解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩.可列方程组为解得答:每亩山田相当于实田0.9亩,每亩场地相当于实田亩.20、(1)见解析;(2)2【解析】试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.(1)连接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°.∵四边形的内角和为360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵点B是⊙O上的一点,∴PB是⊙O的切线.(2)连接OP,∵PA、PB是⊙O的切线,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.21、证明见解析.【解析】

想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.【详解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(AAS)∴BC=EF.【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、证明见解析;.【解析】

根据两组对边分别平行的四边形是平行四边形即可证明;只要求出CD即可解决问题.【详解】证明:、E分别是AB、AC的中点,又四边形CDEF为平行四边形.,,又为AB中点,在中,,,四边形CDEF是平行四边形,.【点睛】本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23、(1)PD是⊙O的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论