版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二进制、八进制、十进制、十六进制四种算法之间的互相转换Tag:二进制,八进制,十六进制,十进制|Author:jakee|一)、数制计算机中采用的是二进制,因为二进制具有运算简单,易实现且可靠,为逻辑设计提供了有利的途径、节省设备等优点,为了便于描述,又常用八、十六进制作为二进制的缩写。一般计数都采用进位计数,其特点是:逢N进一,是每种进位计数制表示一位数所需要的符号数目为基数。采用位置表示法,处在不同位置的数字所代表的值不同,而在固定位置上单位数字表示的值是确定的,这个固定位上的值称为权。在计算机中:D7D6D5D4D3D2D1D0只有两种0和18421二)、数制转换不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别相等的原则进行的。也就是说,若转换前两数相等,转换后仍必须相等。有四进制:十进制:有10个基数:0~~9,逢十进一二进制:有2个基数:0~~1,逢二进一八进制:有8个基数:0~~7,逢八进一十六进制:有16个基数:0~~9,A,B,C,D,E,F(A=10,B=11,C=12,D=13,E=14,F=15),逢十六进一1、数的进位记数法N=anT*pnT+an-2*pn-2+・・・+a2*p2+a1*p1+a0*p02、十进制数与P进制数之间的转换①十进制转换成二进制:十进制整数转换成二进制整数通常采用除2取余法,小数部分乘2取整法。例如,将(30)10转换成二进制数。将(30)10转换成二进制数2|30….0 最右位215….127….123….11….1 最左位・•・(30)10二(11110)2将(30)10转换成八、十六进制数8|30……6 最右位3 最左位・ (30)10=(36)81630…14(E) 最右位1 最左位・ (30)10=(1E)163、将P进制数转换为十进制数把一个二进制转换成十进制采用方法:把这个二进制的最后一位乘上20,倒数第二位乘上21, ,—直到最高位乘上2n,然后将各项乘积相加的结果就它的十进制表达式。把二进制11110转换为十进制(11110)2=1*24+1*23+1*22+1*21+0*20==16+8+4+2+0=(30)10把一个八进制转换成十进制采用方法:把这个八进制的最后一位乘上80,倒数第二位乘上81, ,—直到最高位乘上8n,然后将各项乘积相加的结果就它的十进制表达式。把八进制36转换为十进制(36)8=3*81+6*80=24+6=(30)10把一个十六进制转换成十进制采用方法:把这个十六进制的最后一位乘上160,倒数第二位乘上161, ,—直到最高位乘上16n,然后将各项乘积相加的结果就它的十进制表达式。把十六制1E转换为十进制(1E)16=1*161+14*160=16+14=(30)103、 二进制转换成八进制数二进制数转换成八进制数:对于整数,从低位到高位将二进制数的每三位分为一组,若不够三位时,在高位左面添0,补足三位,然后将每三位二进制数用一位八进制数替换,小数部分从小数点开始,自左向右每三位一组进行转换即可完成。例如:将二进制数1101001转换成八进制数,则(001101001)2(151)8(1101001)2=(151)8八进制数转换成二进制数:只要将每位八进制数用三位二进制数替换,即可完成转换,例如,把八进制数(643.503)8,转换成二进制数,则(643.503)8(110100011.101000011)2(643.503)8=(110100011.101000011)24、 二进制与十六进制之间的转换(1)二进制数转换成十六进制数:由于2的4次方=16,所以依照二进制与八进制的转换方法,将二进制数的每四位用一个十六进制数码来表示,整数部分以小数点为界点从右往左每四位一组转换,小数部分从小数点开始自左向右每四位一组进行转换。(2)十六进制转换成二进制数如将十六进制数转换成二进制数,只要将每一位十六进制数用四位相应的二进制数表示,即可完成转换。例如:将(163・5B)16转换成二进制数,则(163.5B)16(000101100011.01011011)2(163.5B)16=(101100011.01011011)2二进制,八进制,十进制,十六进制之间的转换算法一、 十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。第二步,将商84除以2,商42余数为0。第三步,将商42除以2,商21余数为0。第四步,将商21除以2,商10余数为1。第五步,将商10除以2,商5余数为0。第六步,将商5除以2,商2余数为1。第七步,将商2除以2,商1余数为0。第八步,将商1除以2,商0余数为1。第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。换句话说就是0舍1入。读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步,将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步,将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计。那么,我们可以得出结果将0.45转换为二进制约等于0.0111上面介绍的方法是十进制转换为为二进制的方法,需要大家注意的是:十进制转换为二进制,需要分成整数和小数两个部分分别转换当转换整数时,用的除2取余法,而转换小数时候,用的是乘2取整法注意他们的读数方向因此,我们从上面的方法,我们可以得出十进制数168.125转换为二进制为10101000.001,或者十进制数转换为二进制数约等于10101000.0111。二进制转换为十进制不分整数和小数部分方法:按权相加法,即将二进制每位上的数乘以权,然后相加之和即是十进制数。例将二进制数101.101转换为十进制数。得出结果:(101.101)2=(5.625)10大家在做二进制转换成十进制需要注意的是1)要知道二进制每位的权值2)要能求出每位的值二、 二进制与八进制之间的转换首先,我们需要了解一个数学关系,即23=8,24=16,而八进制和十六进制是用这关系衍生而来的,即用三位二进制表示一位八进制,用四位二进制表示一位十六进制数。接着,记住4个数字8、4、2、1(23=8、22=4、21=2、20=1)。现在我们来练习二进制与八进制之间的转换。(1)二进制转换为八进制方法:取三合一法,即从二进制的小数点为分界点,向左(向右)每三位取成一位,接着将这三位二进制按权相加,得到的数就是一位八位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的八进制数。如果向左(向右)取三位后,取到最高(最低)位时候,如果无法凑足三位可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足三位。例①将二进制数101110.101转换为八进制得到结果:将101110.101转换为八进制为56.5②将二进制数1101.1转换为八进制得到结果:将1101.1转换为八进制为15.4(2)将八进制转换为二进制方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧。例:①将八进制数67.54转换为二进制因此,将八进制数67.54转换为二进制数为110111.101100,即110111.1011大家从上面这道题可以看出,计算八进制转换为二进制首先,将八进制按照从左到右,每位展开为三位,小数点位置不变然后,按每位展开为22,21,20(即4、2、1)三位去做凑数,即aX22+bX21+cX20=该位上的数(a=l或者a=0,b=1或者b=0,c=1或者c=0),将abc排列就是该位的二进制数接着,将每位上转换成二进制数按顺序排列最后,就得到了八进制转换成二进制的数字。以上的方法就是二进制与八进制的互换,大家在做题的时候需要注意的是1) 他们之间的互换是以一位与三位转换,这个有别于二进制与十进制转换2) 大家在做添0和去0的时候要注意,是在小数点最左边或者小数点的最右边(即整数的最高位和小数的最低位)才能添0或者去0,否则将产生错误三、 二进制与十六进制的转换方法:与二进制与八进制转换相似,只不过是一位(十六)与四位(二进制)的转换,下面具体讲解(1)二进制转换为十六进制方法:取四合一法,即从二进制的小数点为分界点,向左(向右)每四位取成一位,接着将这四位二进制按权相加,得到的数就是一位十六位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的十六进制数。如果向左(向右)取四位后,取到最高(最低)位时候,如果无法凑足四位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足四位。①例:将二进制11101001.1011转换为十六进制得到结果:将二进制11101001.1011转换为十六进制为E9.B②例:将101011.101转换为十六进制因此得到结果:将二进制101011.101转换为十六进制为2B.A(2)将十六进制转换为二进制方法:取一分四法,即将一位十六进制数分解成四位二进制数,用四位二进制按权相加去凑这位十六进制数,小数点位置照旧。①将十六进制6E.2转换为二进制数因此得到结果:将十六进制6E.2转换为二进制为01101110.0010即110110.001四、八进制与十六进制的转换方法:一般不能互相直接转换,一般是将八进制(或十六进制)转换为二进制,然后再将二进制转换为十六进制(或八进制),小数点位置不变。那么相应的转换请参照上面二进制与八进制的转换和二进制与十六进制的转五、八进制与十进制的转换(1) 八进制转换为十进制方法:按权相加法,即将八进制每位上的数乘以位权,然后相加之和即是十进制数。例:①将八进制数67.35转换为十进制(2) 十进制转换为八进制十进制转换成八进制有两种方法:1) 间接法:先将十进制转换成二进制,然后将二进制又转换成八进制2) 直接法:前面我们讲过,八进制是由二进制衍生而来的,因此我们可以采用与十进制转换为二进制相类似的方法,还是整数部分的转换和小数部分的转换,下面来具体讲解一下:①整数部分方法:除8取余法,即每次将整数部分除以8,余数为该位权上的数,而商继续除以8,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数。②小数部分方法:乘8取整法,即将小数部分乘以8,然后取整数部分,剩下的小数部分继续乘以8,然后取整数部分,剩下的小数部分又乘以8,一直取到小数部分为零为止。如果永远不能为零,就同十进制数的四舍五入一样,暂取个名字叫3舍4入。例:将十进制数796.703125转换为八进制数解:先将这个数字分为整数部分796和小数部分0.703125整数部分小数部分因此,得到结果十进制796.703125转换八进制为1434.55上面的方法大家可以验证一下,你可以先将十进制转换,然后在转换为八进制,这样看得到的结果是否一样六、十六进制与十进制的转换十六进制与八进制有很多相似之处,大家可以参照上面八进制与十进制的转换自己试试这两个进制之间的转换。十六进制数转换成十进制数2进制,用两个阿拉伯数字:0、1;8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;10进制,用十个阿拉伯数字:0到9;16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊?16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。字母不区分大小写。十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……所以,在第N(N从0开始)位上,如果是是数X(X大于等于0,并且X小于等于15,即:F)表示的大小为X*16的N次方。假设有一个十六进数2AF5,那么如何换算成10进制呢?用竖式计算:2AF5换算成10进制:第0位:5*16A0=5第1位:F*16A1=240第2位:A*16A2=2560第3位:2*16A3=8192+10997直接计算就是:5*16A0+F*16A1+A*16八2+2*16A3=10997(别忘了,在上面的计算中,A表示10,而F表示15)现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。假设有人问你,十进数1234为什么是一千二百三十四?你尽可以给他这么一个算式:1234=1*10A3+2*10A2+3*10A1+4*10A0十六进制数的表达方法如果不使用特殊的书写形式,16进制数也会和10进制相混。随便一个数:9876,就看不出它是16进制或10进制。C,C++规定,16进制数必须以0x开头。比如0X1表示一个16进制数。而1则表示一个十进制。另外如:0xff,0xFF,0X102A,等等。其中的x也也不区分大小写。(注意:0x中的0是数字0,而不是字母O)以下是一些用法示例:inta=0x100F;intb=0x70+a;至此,我们学完了所有进制:10进制,8进制,16进制数的表达方式。最后一点很重要,C/C++中,10进制数有正负之分,比如12表示正12,而-12表示负12,;但8进制和16进制只能用达无符号的正整数,如果你在代码中里:-078,或者写:-0xF2,C,C++并不把它当成一个负数。十六进制数在转义符中的使用转义符也可以接一个16进制数来表示一个字符。如在6.2.4小节中说的‘?'字符,可以有以下表达方式:‘?' //直接输入字符5 〃用八进制,此时可以省略开头的0‘\0x3F'〃用十六进制同样,这一小节只用于了解。除了空字符用八进制数‘\0‘表示以外,我们很少用后两种方法表示一个字符。十进制数转换到二、八、十六进制数6.3.110进制数转换为2进制数给你一个十进制,比如:6,如果将它转换成二进制数呢?10进制数转换成二进制数,这是一个连续除2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。最后将所有余数倒序排列,得到数就是转换结果。听起来有些糊涂?我们结合例子来说明。比如要转换6为二进制数。“把要转换的数,除以2,得到商和余数”。那么:要转换的数是6,6F2,得到商是3,余数是0。(不要告诉我你不会计算6^3!)“将商继续除以2,直到商为0……”现在商是3,还不是0,所以继续除以2。那就:3F2,得到商是1,余数是1。“将商继续除以2,直到商为0……”现在商是1,还不是0,所以继续除以2。那就:1F2,得到商是0,余数是1(拿笔纸算一下,1F2是不是商0余1!)“将商继续除以2,直到商为0……最后将所有余数倒序排列”好极!现在商已经是0。我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!6转换成二进制,结果是110。把上面的一段改成用表格来表示,则为:被除数计算过程商余数66/23033/21111/201(在计算机中,三用/来表示)如果是在考试时,我们要画这样表还是有点费时间,所更常见的换算过程是使用下图的连除:(图:1)请大家对照图,表,及文字说明,并且自已拿笔计算一遍如何将6转换为二进制数。说了半天,我们的转换结果对吗?二进制数110是6吗?你已经学会如何将二进制数转换成10进制数了,所以请现在就计算一下110换成10进制是否就是6。6.3.210进制数转换为8、16进制数非常开心,10进制数转换成8进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成8。来看一个例子,如何将十进制数120转换成八进制数。用表格表示:被除数计算过程商余数120120/81501515/81711/801120转换为8进制,结果为:170。非常非常开心,10进制数转换成16进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成16。同样是120,转换成16进制则为:被除数计算过程商余数120120/167877/1607120转换为16进制,结果为:78。请拿笔纸,采用(图:1)的形式,演算上面两个表的过程。二、十六进制数互相转换二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。我们也一样,只要学完这一小节,就能做到。首先我们来看一个二进制数:1111,它是多少呢?你可能还要这样计算:1*2八0+1*2八1+1*2八2+1*2八3=1*1+1*2+1*4+1*8=15。然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为23=8,然后依次是22=4,21=2,20=1。记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。下面列出四位二进制数xxxx所有可能的值(中间略过部分)仅4位的2进制数快速计算方法十进制值十六进值1111=8+4+2+1=15 F1110=8+4+2+0=14 E1101=8+4+0+1=13 D1100=8+4+0+0=12 C1011=8+4+0+1=11 B1010=8+0+2+0=10A1001=8+0+0+1=1090001=0+0+0+1=10001=0+0+0+1=10000 =0+0+0+0=0 0二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。如(上行为二制数,下面为对应的十六进制):11111101,10100101,10011011FD,A5,9B反过来,当我们看到FD时,如何迅速将它转换为二进制数呢?先转换F:看到F,我们需知道它是15(可能你还不熟悉A〜F这五个数),然后15如何用8421凑呢?应该是8+4+2+1,所以四位全为1:1111。接着转换D:看到D,知道它是13,13如何用8421凑呢?应该是:8+2+1,即:1011。所以,FD转换为二进制数,为:11111011由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。比如,十进制数1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数:被除数计算过程商余数12341234/167727777/16413(D)44/160
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业无不良行为承诺书
- 机器人工程合同范本智能
- 咖啡馆电气系统安装合同
- 个性化医疗CTO实习聘用合同
- 空调工程建造师聘用合同样本
- 轨道交通架子管租赁合约
- 保健按摩兼职业务员招聘合同
- 中小企业薪酬管理方案
- 通信工程安全施工协议
- 办公大楼桩基施工合同范本
- 王贵启-玉米田杂草发生发展及除草剂优解-合肥0728
- 幼儿园幼小衔接实施方案(修改)
- 2023北京海淀区八上初二期末数学试卷及答案
- 浙江重症医学专科护士理论考核试卷与答案
- 胰腺癌的影像学表现课件
- 电梯维保报价单【模板】
- 2023年四川凉山州木里重点国有林保护局招聘18人笔试备考试题及答案解析
- 产品质量风险辨识与控制清单范例
- 电力电缆试验
- 压疮与失禁性皮炎鉴别
- 思想意识形态渗透就在你我身边
评论
0/150
提交评论