2017-2018版高中数学第一章三角函数1周期现象2角的概念的推广学案4_第1页
2017-2018版高中数学第一章三角函数1周期现象2角的概念的推广学案4_第2页
2017-2018版高中数学第一章三角函数1周期现象2角的概念的推广学案4_第3页
2017-2018版高中数学第一章三角函数1周期现象2角的概念的推广学案4_第4页
2017-2018版高中数学第一章三角函数1周期现象2角的概念的推广学案4_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精PAGE17学必求其心得,业必贵于专精PAGE1周期现象2角的概念的推广学习目标1。了解现实生活中的周期现象。2。了解任意角的概念,理解象限角的概念.3。掌握终边相同的角的含义及其表示.知识点一周期现象思考“钟表上的时针每经过12小时运行一周,分针每经过1小时运行一周,秒针每经过1分钟运行一周.”这样的现象,具有怎样的属性?梳理(1)以相同间隔重复出现的现象叫作周期现象.(2)要判断一种现象是否为周期现象,关键是看每隔一段时间这种现象是否会________出现,若出现,则为周期现象;否则,不是周期现象.知识点二角的相关概念思考1将射线OA绕着点O旋转到OB位置,有几种旋转方向?思考2如果一个角的始边与终边重合,那么这个角一定是零角吗?梳理(1)角的概念:角可以看成平面内____________绕着________从一个位置________到另一个位置所形成的图形.(2)角的分类:按旋转方向可将角分为如下三类:类型定义图示正角按________________形成的角负角按____________________形成的角零角一条射线____________________,称它形成了一个零角知识点三象限角思考把角的顶点放在平面直角坐标系的原点,角的始边与x轴的非负半轴重合,旋转该角,则其终边(除端点外)可能落在什么位置?梳理在直角坐标系内,使角的顶点与原点重合,角的始边与x轴的非负半轴重合.象限角:________在第几象限就是第几象限角;轴线角:________落在坐标轴上的角.知识点四终边相同的角思考1假设60°的终边是OB,那么-660°,420°的终边与60°的终边有什么关系,它们与60°分别相差多少?思考2如何表示与60°终边相同的角?梳理终边相同角的表示一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k×360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与________的整数倍的和.类型一周期现象的应用例1水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?反思与感悟(1)应用周期现象中“周而复始"的规律性可以达到“化繁为简”、“化无限为有限”的目的.(2)只要确定好周期现象中重复出现的“基本单位"就可以把问题转化到一个周期内来解决.跟踪训练1利用例1中的水车盛800升的水,至少需要多少时间?类型二象限角的判定例2在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.反思与感悟判断象限角的步骤(1)当0°≤α<360°时,直接写出结果.(2)当α〈0°或α≥360°时,将α化为k·360°+β(k∈Z,0°≤β〈360°),转化为判断角β所属的象限.跟踪训练2(1)判断下列角所在的象限,并指出其在0°~360°范围内终边相同的角.①549°;②-60°;③-503°36′。(2)若α是第二象限角,试确定2α、eq\f(α,2)是第几象限角.类型三终边相同的角命题角度1求与已知角终边相同的角例3在与角10030°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)[360°,720°)的角.反思与感悟求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值.跟踪训练3写出与α=-1910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.命题角度2求终边在给定直线上的角的集合例4写出终边在直线y=-eq\r(3)x上的角的集合.反思与感悟求终边在给定直线上的角的集合,常用分类讨论的思想,即分x≥0和x<0两种情况讨论,最后再进行合并.跟踪训练4写出终边在直线y=eq\f(\r(3),3)x上的角的集合.1.下列是周期现象的为()①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次;③某超市每天的营业额;④某地每年6月份的平均降雨量.A.①②④ B.②④C.①② D.①②③2.与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}3.2017°是第________象限角.4.一个质点,在平衡位置O点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O点开始计时,质点向左运动第一次到达M点用了0。3s,又经过0。2s第二次通过M点,则质点第三次通过M点,还要经过的时间是________s.5.已知,如图所示.(1)写出终边落在射线OA,OB上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.1.判断是否为周期现象,关键是看在相同的间隔内,图像是否重复出现.2.由于角的概念推广了,那么终边相同的角有无数个,这无数个终边相同的角构成一个集合.与α角终边相同的角可表示为{β|β=α+k·360°,k∈Z},要领会好k∈Z的含义.3.熟记终边在坐标轴上的各角的度数,才能正确快速地用不等式表示各象限角,注意不等式表示的角的终边随整数k的改变而改变时,要对k分类讨论.

答案精析问题导学知识点一思考周而复始,重复出现.梳理(2)重复知识点二思考1有顺时针和逆时针两种旋转方向.思考2不一定,若角的终边未作旋转,则这个角是零角.若角的终边作了旋转,则这个角就不是零角.梳理(1)一条射线端点旋转(2)逆时针方向旋转顺时针方向旋转没有作任何旋转知识点三思考终边可能落在坐标轴上或四个象限内.梳理终边终边知识点四思考1它们的终边相同.-660°=60°-2×360°,420°=60°+360°,故它们与60°分别相隔了2个周角的和及1个周角.思考260°+k·360°(k∈Z).梳理周角题型探究例1解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升),所以水车1小时内最多盛水160×12=1920(升).跟踪训练1解设x分钟后盛水y升,由例1知每转一圈,水车最多盛水16×10=160(升),所以y=eq\f(x,5)·160=32x,为使水车盛800升的水,则有32x≥800,所以x≥25,即水车盛800升的水至少需要25分钟.例2解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.跟踪训练2解(1)①∵549°=189°+360°,∴549°角为第三象限的角,与189°角终边相同.②∵-60°=300°-360°,∴-60°角为第四象限的角,与300°角终边相同.③∵-503°36′=216°24′-2×360°,∴-503°36′角为第三象限的角,与216°24′角终边相同.(2)由题意得90°+k·360°〈α<180°+k·360°(k∈Z),①所以180°+2k·360°<2α<360°+2k·360°(k∈Z).故2α是第三或第四象限角或终边落在y轴非正半轴上的角.由①得45°+k·180°〈eq\f(α,2)<90°+k·180°(k∈Z),当k为偶数时,令k=2n(n∈Z),得45°+n·360°<eq\f(α,2)<90°+n·360°(n∈Z),故eq\f(α,2)是第一象限角.当k为奇数时,令k=2n+1(n∈Z),得45°+180°+n·360°〈eq\f(α,2)〈90°+180°+n·360°(n∈Z),即225°+n·360°〈eq\f(α,2)<270°+n·360°(n∈Z),故eq\f(α,2)为第三象限角.综上可知,eq\f(α,2)为第一或第三象限角.例3解与10030°终边相同的角的一般形式为β=k·360°+10030°(k∈Z).(1)由-360°<k·360°+10030°<0°,得-10390°<k·360°<-10030°,解得k=-28,故所求的最大负角为β=-50°.(2)由0°<k·360°+10030°<360°,得-10030°<k·360°<-9670°,解得k=-27,故所求的最小正角为β=310°.(3)由360°≤k·360°+10030°<720°,得-9670°≤k·360°<-9310°,解得k=-26,故所求的角为β=670°.跟踪训练3解由终边相同的角的表示知,与角α=-1910°终边相同的角的集合为{β|β=k·360°-1910°,k∈Z}.∵-720°≤β<360°,即-720°≤k·360°-1910°<360°(k∈Z),∴3eq\f(11,36)≤k<6eq\f(11,36)(k∈Z),故取k=4,5,6.当k=4时,β=4×360°-1910°=-470°;当k=5时,β=5×360°-1910°=-110°;当k=6时,β=6×360°-1910°=250°.例4解终边在y=-eq\r(3)x(x<0)上的角的集合是S1={α|α=120°+k·360°,k∈Z};终边在y=-eq\r(3)x(x≥0)上的角的集合是S2={α|α=300°+k·360°,k∈Z}.因此,终边在直线y=-eq\r(3)x上的角的集合是S=S1∪S2={α|α=120°+k·360°,k∈Z}∪{α|α=300°+k·360°,k∈Z},即S={α|α=120°+2k·180°,k∈Z}∪{α|α=120°+(2k+1)·180°,k∈Z}={α|α=120°+n·180°,n∈Z}.故终边在直线y=-eq\r(3)x上的角的集合是S={α|α=120°+n·180°,n∈Z}.跟踪训练4解终边在y=eq\f(\r(3),3)x(x≥0)上的角的集合是S1={α|α=30°+k·360°,k∈Z};终边在y=eq\f(\r(3),3)x(x<0)上的角的集合是S2={α|α=210°+k·360°,k∈Z}.因此,终边在直线y=eq\f(\r(3),3)x上的角的集合是S=S1∪S2={α|α=30°+k·360°,k∈Z}∪{α|α=210°+k·360°,k∈Z},即S={α|α=30°+2k·180°,k∈Z}∪{α|α=30°+(2k+1)·180°,k∈Z}={α|α=30°+n·180°,n∈Z}.故终边在直线y=eq\f(\r(3),3)x上的角的集合是S={α|α=30°+n·180°,n∈Z

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论