江苏省盐城市2023学年中考数学押题试卷含解析及点睛_第1页
江苏省盐城市2023学年中考数学押题试卷含解析及点睛_第2页
江苏省盐城市2023学年中考数学押题试卷含解析及点睛_第3页
江苏省盐城市2023学年中考数学押题试卷含解析及点睛_第4页
江苏省盐城市2023学年中考数学押题试卷含解析及点睛_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数这些运动员跳高成绩的中位数是()A. B. C. D.2.下列各运算中,计算正确的是()A.a12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a•3a=6a23.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是()A. B. C. D.4.下面的几何体中,主视图为圆的是()A. B. C. D.5.对于反比例函数y=﹣2xA.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y26.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A. B. C. D.7.矩形具有而平行四边形不具有的性质是()A.对角相等 B.对角线互相平分C.对角线相等 D.对边相等8.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,39.函数在同一直角坐标系内的图象大致是()A. B. C. D.10.如图,已知第一象限内的点A在反比例函数y=2x上,第二象限的点B在反比例函数y=kxA.﹣22 B.4 C.﹣4 D.22二、填空题(共7小题,每小题3分,满分21分)11.如图,在中,,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动连接,线段的长随的变化而变化,当最大时,______.当的边与坐标轴平行时,______.12.若xay与3x2yb是同类项,则ab的值为_____.13.一个多边形的每个内角都等于150°,则这个多边形是_____边形.14.的倒数是_____________.15.若不等式组的解集是﹣1<x≤1,则a=_____,b=_____.16.函数中,自变量的取值范围是______17.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.三、解答题(共7小题,满分69分)18.(10分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.在图①中,若EG=4,GF=6,求正方形ABCD的边长.19.(5分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.20.(8分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.21.(10分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.22.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.23.(12分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?24.(14分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

根据中位数的定义解答即可.【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.

所以这些运动员跳高成绩的中位数是1.1.

故选:C.【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.2、D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.3、A【解析】

解:可把A、B、C、D选项折叠,能够复原(1)图的只有A.故选A.4、C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.5、D【解析】

根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A.k=−2<0,∴它的图象在第二、四象限,故本选项正确;B.k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵-2D.若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0<x2,则y2<y1,故本选项错误.故选:D.【点睛】考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.6、B【解析】

无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有,共2个,∴卡片上的数为无理数的概率是.故选B.【点睛】本题考查了无理数的定义及概率的计算.7、C【解析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选C.8、A【解析】

根据题意可得方程组,再解方程组即可.【详解】由题意得:,解得:,故选A.9、C【解析】

根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选C.10、C【解析】试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故选C.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.二、填空题(共7小题,每小题3分,满分21分)11、4【解析】

(1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;(2)根据等腰三角形的性质求出CD,分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.【详解】(1),,当O,D,C共线时,OC取最大值,此时OD⊥AB.∵,∴△AOB为等腰直角三角形,∴;(2)∵BC=AC,CD为AB边的高,∴∠ADC=90°,BD=DA=AB=4,∴CD==3,当AC∥y轴时,∠ABO=∠CAB,∴Rt△ABO∽Rt△CAD,∴,即,解得,t=,当BC∥x轴时,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,∴,即,解得,t=,

则当t=或时,△ABC的边与坐标轴平行.

故答案为t=或.【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.12、2【解析】试题解析:∵xay与3x2yb是同类项,∴a=2,b=1,则ab=2.13、1【解析】

根据多边形的内角和定理:180°•(n-2)求解即可.【详解】由题意可得:180°•(n-2)=150°•n,

解得n=1.

故多边形是1边形.14、【解析】先把带分数化成假分数可得:,然后根据倒数的概念可得:的倒数是,故答案为:.15、-2-3【解析】

先求出每个不等式的解集,再求出不等式组的解集,即可得出关于a、b的方程,求出即可.【详解】解:由题意得:解不等式①得:x>1+a,解不等式②得:x≤不等式组的解集为:1+a<x≤不等式组的解集是﹣1<x≤1,..1+a=-1,=1,解得:a=-2,b=-3故答案为:-2,-3.【点睛】本题主要考查解含参数的不等式组.16、x≠1【解析】

解:∵有意义,∴x-1≠0,∴x≠1;故答案是:x≠1.17、10,,.【解析】解:如图,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10;如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=;如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC==.故答案为10,,.三、解答题(共7小题,满分69分)18、(1)45°.(1)MN1=ND1+DH1.理由见解析;(3)11.【解析】

(1)先根据AG⊥EF得出△ABE和△AGE是直角三角形,再根据HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出结论;(1)由旋转的性质得出∠BAM=∠DAH,再根据SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根据勾股定理即可得出结论;(3)设正方形ABCD的边长为x,则CE=x-4,CF=x-2,再根据勾股定理即可得出x的值.【详解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋转可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN与△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.设正方形ABCD的边长为x,则CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解这个方程,得x1=11,x1=-1(不合题意,舍去).∴正方形ABCD的边长为11.【点睛】本题考查的是几何变换综合题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中.19、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆.【解析】【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3-=,PC=;再分情况讨论:①当△AOD∽△BPC时,根据相似三角形性质得,

解得:a=3(舍去);②△AOD∽△CPB,根据相似三角形性质得,解得:a1=3(舍),a2=;(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.【详解】(1)∵y=(x-a)(x-3)(0<a<3)与x轴交于点A、B(点A在点B的左侧),∴A(a,0),B(3,0),当x=0时,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴对称轴x=,AO=a,OD=3a,当x=时,y=-,∴C(,-),∴PB=3-=,PC=,①当△AOD∽△BPC时,∴,即,

解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.综上所述:a的值为;(3)能;连接BD,取BD中点M,∵D、B、O三点共圆,且BD为直径,圆心为M(,a),若点C也在此圆上,∴MC=MB,∴,化简得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=,∴当a=时,D、O、C、B四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.20、详见解析.【解析】

(1)根据全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性质得∠DAC=∠BCA,可证AD∥BC,根据平行线的性质得出∠1=∠1;(1)(3)和(1)的证法完全一样.先证△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,从而∠1=∠1.【详解】证明:∠1与∠1相等.在△ADC与△CBA中,,∴△ADC≌△CBA.(SSS)∴∠DAC=∠BCA.∴DA∥BC.∴∠1=∠1.②③图形同理可证,△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,∠1=∠1.21、(1)50;(2)115.2°;(3)12【解析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.解:(1)参加本次比赛的学生有:4÷8%=50(人)(2)B等级的学生共有:50-4-20-8-2=16(人).∴所占的百分比为:16÷50=32%∴B等级所对应扇形的圆心角度数为:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生)=6“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键.22、(1)抛物线的解析式为:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).解得:,∴抛物线的解析式为:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴抛物线的对称轴是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x轴于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)当y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论