版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.整数a、b在数轴上对应点的位置如图,实数c在数轴上且满足,如果数轴上有一实数d,始终满足,则实数d应满足().A. B. C. D.2.下列长度的三条线段能组成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,43.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为()A.4 B.3 C. D.4.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.2 C.3 D.5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个6.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为()A.x>2 B.0<x<4C.﹣1<x<4 D.x<﹣1或x>47.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1, C.1,1, D.1,2,8.|﹣3|的值是()A.3 B. C.﹣3 D.﹣9.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=的图象无交点,则有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<010.如图所示的几何体是由4个大小相同的小立方体搭成,其俯视图是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.12.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____13.已知A(x1,y1),B(x2,y2)都在反比例函数y=的图象上.若x1x2=﹣4,则y1y2的值为______.14.如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_____.15.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1.根据以上阅读材料,可构图求出代数式的最小值为_____.16.如图,中,∠,,的面积为,为边上一动点(不与,重合),将和分别沿直线,翻折得到和,那么△的面积的最小值为____.三、解答题(共8题,共72分)17.(8分)已知:如图,,,.求证:.18.(8分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)19.(8分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.20.(8分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.21.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.22.(10分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.(1)线段AE=______;(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.23.(12分)全民健身运动已成为一种时尚,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分,运动形式ABCDE人数请你根据以上信息,回答下列问题:接受问卷调查的共有人,图表中的,.统计图中,类所对应的扇形的圆心角的度数是度.揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.24.九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.(1)求关于的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
根据a≤c≤b,可得c的最小值是﹣1,根据有理数的加法,可得答案.【详解】由a≤c≤b,得:c最小值是﹣1,当c=﹣1时,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故选D.【点睛】本题考查了实数与数轴,利用a≤c≤b得出c的最小值是﹣1是解题的关键.2、D【解析】试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选D.3、C【解析】
设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.【详解】设I的边长为x根据题意有解得或(舍去)故选:C.【点睛】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.4、A【解析】连接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B关于AC对称,则BE交于AC的点是P点,此时PD+PE最小,∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),∴此时PD+PE最小,此时PD+PE=BE,∵正方形的面积是12,等边三角形ABE,∴BE=AB=,即最小值是2,故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.5、C【解析】
根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-b2a=-3根据函数与x轴有两个交点可得:b2故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.6、C【解析】
看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,故选C.【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.7、D【解析】
根据三角形三边关系可知,不能构成三角形,依此即可作出判定;
B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;
C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;
B、∵12+12=()2,是等腰直角三角形,故选项错误;
C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.
故选D.8、A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数,故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.9、D【解析】当k1,k2同号时,正比例函数y=k1x与反比例函数y=的图象有交点;当k1,k2异号时,正比例函数y=k1x与反比例函数y=的图象无交点,即可得当k1k2<0时,正比例函数y=k1x与反比例函数y=的图象无交点,故选D.10、C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】
过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,【详解】解:连接OB,OA′,AA′,∵AA′关于直线MN对称,∴∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,
∴A′B=2A′Q=即PA+PB的最小值.【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.12、【解析】
连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案为.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.13、﹣1.【解析】
根据反比例函数图象上点的坐标特征得到再把它们相乘,然后把代入计算即可.【详解】根据题意得所以故答案为:−1.【点睛】考查反比例函数图象上点的坐标特征,把点的坐标代入反比例函数解析式得到是解题的关键.14、1≤x≤1【解析】
此题需要运用极端原理求解;①BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;【详解】解:如图:①当F、D重合时,BP的值最小;根据折叠的性质知:AF=PF=5;在Rt△PFC中,PF=5,FC=1,则PC=4;∴BP=xmin=1;②当E、B重合时,BP的值最大;由折叠的性质可得BP=AB=1.所以BP的取值范围是:1≤x≤1.故答案为:1≤x≤1.【点睛】此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.15、4【解析】
根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题.【详解】如图所示:C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即当x=时,代数式有最小值,此时为:.故答案是:4.【点睛】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解.16、4.【解析】
过E作EG⊥AF,交FA的延长线于G,由折叠可得∠EAG=30°,而当AD⊥BC时,AD最短,依据BC=7,△ABC的面积为14,即可得到当AD⊥BC时,AD=4=AE=AF,进而得到△AEF的面积最小值为:AF×EG=×4×2=4.【详解】解:如图,过E作EG⊥AF,交FA的延长线于G,
由折叠可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,
∵∠BAC=75°,
∴∠EAF=150°,
∴∠EAG=30°,
∴EG=AE=AD,
当AD⊥BC时,AD最短,
∵BC=7,△ABC的面积为14,
∴当AD⊥BC时,,即:,∴.
∴△AEF的面积最小值为:
AF×EG=×4×2=4,故答案为:4.【点睛】本题主要考查了折叠问题,解题的关键是利用对应边和对应角相等.三、解答题(共8题,共72分)17、见解析【解析】
先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【详解】证明:∵∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC.
即∠BAC=∠DAE,
在△ABC和△ADE中,,
∴△ABC≌△ADE(SAS).
∴BC=DE.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.18、(1)2;(2)宣传牌CD高(20﹣1)m.【解析】试题分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到结果BH=ABsin∠BAH=1sin30°=1×=2;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如图,过点B作BF⊥CE,垂足为F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得结果.试题解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.答:点B距水平面AE的高度BH是2米;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如图,过点B作BF⊥CE,垂足为F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:广告牌CD的高度约为(20﹣1)米.19、(1)CD与圆O的位置关系是相切,理由详见解析;(2)AD=.【解析】
(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC为半径,∴CD与圆O的位置关系是相切;(2)连接BC,∵AB是⊙O的直径,∴∠BCA=90°,∵圆O的半径为3,∴AB=6,∵∠CAB=30°,∴∵∠BCA=∠CDA=90°,∠CAB=∠CAD,∴△CAB∽△DAC,∴∴∴【点睛】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.20、(1)120,30%;(2)作图见解析;(3)1.【解析】试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、“一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.试题解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,补全统计图如下:(3)1800×=1人.考点:条形统计图;扇形统计图;用样本估计总体.21、(1)2、45、20;(2)72;(3)【解析】分析:(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;(2)用360°乘以C等次百分比可得;(3)画出树状图,由概率公式即可得出答案.详解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)=.点睛:此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.22、(1)5;(2);(3)时,半径PF=;t=16,半径PF=12.【解析】
(1)由矩形性质知BC=AD=5,根据BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,据此求得AF=t,再分0≤t≤4和t>4两种情况分别求出EF即可得;(3)由以点F为圆心的⊙F恰好与直线AB、BC相切时PF=PG,再分t=0或t=4、0<t<4、t>4这三种情况分别求解可得【详解】(1)∵四边形ABCD为矩形,∴BC=AD=5,∵BE∶CE=3∶2,则BE=3,CE=2,∴AE===5.(2)如图1,当点P在线段AB上运动时,即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,则EF=AE-AF=5-t,即y=5-t(0≤t≤4);如图2,当点P在射线AB上运动时,即t>4,此时,EF=AF-AE=t-5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论