版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a72.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有()A.①④ B.①③ C.①②③ D.②③④3.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3 B.4 C. D.4.如图,在中,,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是()A. B. C. D.5.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.26.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A. B. C. D.7.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是()A.2B.83C.2+28.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()A. B. C. D.9.化简(﹣a2)•a5所得的结果是()A.a7 B.﹣a7 C.a10 D.﹣a1010.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(
)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5二、填空题(共7小题,每小题3分,满分21分)11.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于__________.12.若关于x的方程有两个相等的实数根,则m的值是_________.13.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.14.不等式的解集是________________15.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为_____.16.关于的分式方程的解为负数,则的取值范围是_________.17.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.三、解答题(共7小题,满分69分)18.(10分)如图,在平面直角坐标系xOy中,直线与双曲线(x>0)交于点.求a,k的值;已知直线过点且平行于直线,点P(m,n)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x>0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为.横、纵坐标都是整数的点叫做整点.①当时,直接写出区域内的整点个数;②若区域内的整点个数不超过8个,结合图象,求m的取值范围.19.(5分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.20.(8分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?21.(10分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.22.(10分)如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(1)已知⊙O的半径为1.①若=,求BC的长;②当为何值时,AB•AC的值最大?23.(12分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?24.(14分)先化简,再求值,,其中x=1.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.【点睛】此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.2、C【解析】
根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.【详解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;所有点中,只有点D到A距离为2个单位,故③正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.故选:C.【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.3、C【解析】如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=4,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD=.故选C.4、C【解析】
如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【详解】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是1.故选:C.【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.5、D【解析】
由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.6、D【解析】
根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.7、C【解析】当⊙C与AD相切时,△ABE面积最大,连接CD,则∠CDA=90°,∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案为C.8、A【解析】
根据应用题的题目条件建立方程即可.【详解】解:由题可得:即:故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.9、B【解析】分析:根据同底数幂的乘法计算即可,计算时注意确定符号.详解:(-a2)·a5=-a7.故选B.点睛:本题考查了同底数幂的乘法,熟练掌握同底数的幂相乘,底数不变,指数相加是解答本题的关键.10、A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.二、填空题(共7小题,每小题3分,满分21分)11、3【解析】试题解析:平移CD到C′D′交AB于O′,如图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考点:解直角三角形.12、m=-【解析】
根据题意可以得到△=0,从而可以求得m的值.【详解】∵关于x的方程有两个相等的实数根,∴△=,解得:.故答案为.13、【解析】mn(n-m)-n(m-n)=mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).14、【解析】
首先去分母进而解出不等式即可.【详解】去分母得,1-2x>15移项得,-2x>15-1合并同类项得,-2x>14系数化为1,得x<-7.故答案为x<-7.【点睛】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.15、【解析】试题分析:根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出、、、的面积,即可得出答案∵四边形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴,∴,∴,∴,,,∴考点:矩形的性质;平行四边形的性质点评:本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等16、【解析】
分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为:a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析17、2【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,ymin=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴ymin=2,三、解答题(共7小题,满分69分)18、(1),;(2)①3,②.【解析】
(1)将代入可求出a,将A点坐标代入可求出k;(2)①根据题意画出函数图像,可直接写出区域内的整点个数;②求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可.【详解】解:(1)将代入得a=4将代入,得(2)①区域内的整点个数是3②∵直线是过点且平行于直线∴直线的表达式为当时,即线段PM上有整点∴【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.19、木竿PQ的长度为3.35米.【解析】
过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.试题解析:【详解】解:过N点作ND⊥PQ于D,则四边形DPMN为矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴,∴QD==2.25,∴PQ=QD+DP=2.25+1.1=3.35(m).答:木竿PQ的长度为3.35米.【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.20、(1);(2);(3)最多获利4480元.【解析】
(1)销售量y为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:W=﹣20x2+3000x﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点睛】二次函数的应用.21、(1)y=60x;(2)300【解析】
(1)由题图可知,甲组的y是x的正比例函数.设甲组加工的零件数量y与时间x的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.所以,解得a=300.22、(1)证明见解析;(2)证明见解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①设AB=5k、AC=1k,由BC2-AC2=AB•AC知BC=2k,连接ED交BC于点M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(1)设AB=5k、AC=1k,∵BC2﹣AC2=AB•AC,∴BC=2k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《物理光学》课程教学大纲
- 2024年低价乡下小院出租合同范本
- 2024年出售东电楼房合同范本大全
- 2024年承接土方业务合同范本
- IMF报告:亚太地区经济展望报告
- 浙江省强基联盟2024-2025学年高二上学期11月联考物理试题(含解析)
- 2024新版企业招标承包经营合同
- 2024店面出租合同范本
- 2024个人借款合同范本的模板
- 2024至2030年中国移动感应器数据监测研究报告
- 中国铁路国际有限公司招聘考试试卷2022
- DB34∕T 2290-2022 水利工程质量检测规程
- 国开(河北)2024年《公文写作》形考作业4答案
- 电信行业移动通信网络质量提升方案
- 2021年山东省职业院校技能大赛导游服务赛项-导游英语口语测试题库
- 古代小说戏曲专题-形考任务2-国开-参考资料
- 文印竞标合同范本
- 2024至2030年中国汽车EPS无刷电机行业市场前景预测与发展趋势研究报告
- 人教版道德与法治五年级上册全册单元测试卷课件
- 2024-2030年中国聚醚醚酮树脂行业市场发展趋势与前景展望战略分析报告
- 2019版外研社高中英语必选择性必修一-四单词
评论
0/150
提交评论