案例三时间序列分析_第1页
案例三时间序列分析_第2页
案例三时间序列分析_第3页
案例三时间序列分析_第4页
案例三时间序列分析_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

案例三时间序列分析学习目的通过本案例的学习,旨在使同学们达到以下几个方面的学习目标:1、培养学习利用多种时间序列分析方法解决实际问题的能力2.掌握时间序列平滑方法:移动平均、加权移动平均等方法。了解这些平滑方法在处理时时序列数据时各自的优点和缺点,学会用这些方法来处理不同类型和特点的数据。3、掌握时问序列的构成分析方法。影响时间序列的因素大体上可以分为四种,即长期趋势(T)、季节变动()、循环波动(c)和不规则波动(J),通过本案例的学习,学会如何将各种影响因素分别从时问序列中分离出来并用数量加以测定。4、掌握利用模型对时间序列进行分析的方法。在假定现象未来的发展趋势能够与过去保持一致的前提下,同学们要学会利用以上建立的模型对未来进行预测。数据文件对于本案例,可以用各种软件包括E某cel、Eview、SPSS或SAS等进行分析。但我们建议使用Eview,因为这个软件在处理时间序列问题时更加方便也更为专业化。案例分析所需统计知识李洁明《统计学原理》(第四版)复旦大学出版社第130-168页案例分析过程提示首先用软件做出我国1978-2006居民收入时序图。观察数列按时间顺序变化的特点。由图中可以看出,收入有明显的向上发展趋势。在此基础上,我们可用进行以下方法进行分析。1、对城乡居民的收入差异进行描述性分析.2、时间序列平滑法。利用移动平均法对时间数列进行平滑,观察长期趋势3、建立长期趋势模型,进行预测需要讨论的问题1、以上各种分析方法分别适用于什么特点的时间序列数据?2、各种分析方法在分析过程中提供的信息有什么不同?3、除了以上这几种时间序列分析方法之外,你还可以找到其他种类的时间序列分析方法吗?你认为还有哪种分析方法适用于本案例的数据特点?附录:阅读案例全国城镇居民收入差异的数量分析随着改革开放的不断深入,社会主义市场经济体制的进一步确立,我国城镇居民的收入普遍提高,人们生活水平明显改善。但是,在发展中另一种趋势也明显起来,即我国城镇居民收入两极分化的程度在加剧,本文试图借助计量经济学的有关理论,从全国城镇居民人均收入的差异着手讨论,通过模型从静态和动态的角度探讨城镇居民收入两极分化的形成过程、现状及发展趋势,进而讨论如何合理确定并及时调整我国城镇居民收入贫困线的标准。一、城镇居民人均收入差异分析几年来我国城镇居民生活有了可喜的变化,居民生活水平有了明显提高。1990年--1996年我国城镇居民收入状况表时间(年)人均年收入(元)最高收入(元)困难户收入(元)人均年收入与困难户收入比例19901522.792675.64782.932.05819911713.102956.81928.862003663.001032.002.03219932583.164905.771239.351.99219943502.316837.811566.331.80819954288.098231.311984.921.86219964844.789250.442242.921.858(如表)1996年我国城镇居民家庭人均年收入达到4844.78元,比1990年增长218%,年均递增速度为21.28%,各年增长速度均超过了同期各项反项指标,如物价指数、通货膨胀指数的增长速度。可见,全国城镇居民不仅在名义货币收入上有了大幅度的提高,在实际水平上也同样实现了增长。全国困难户人均收入水平由1990年的782.93元提高到1996年的2242.92元,增长了1459.99元;最高收入户人均收入水平由1990年的2675.64元提高为9250.44元,增长2.46倍。这一切都充分说明,社会主义市场经济的逐步确立,使我国城镇居民的收入水平有了明显的提高。但是,应该看到,在全国城镇居民收入水平整体上得到提高的同时,收入的差距被拉大了。七年中,我国困难户与最高收入户居民人均年收入差异从1990年的1892.71元扩大到1996年7007.52元,扩大了2.70倍。均增长速度为24.38%,超过人均收入水平的增长速度。这一结果清楚地说明:七年来全国城镇居民平均收入水平两极分化的程度加剧了。这并不是我们建立社会主义市场经济体制,全面振兴经济的初衷,我们不希望在国家经济明显趋好的大环境下出现更多的“穷人”,但这又是一个我们不得不接受的现实。进一步的分析我们可以看到,这种差距的拉大还伴随着收入中非工资性收入所占比重增大、灰色收入和资本收入增加的趋势。二、我国城镇居民收入水平及差异的数量分析其中一最高收入户与困难户人均年收入之差;一时间。模型(1)均通过了总体与个体的检验显著性检验。其中一全国城镇居民人均年收入与困难户人均年收入比例;一时间。模型(2)虽然判定系数=0.725,但是个体检验相当显著,并且标准差和残差平方和都很小,这说明该比例值受时间变化的影响不大。对模型(1)求二阶导数,即令模型(3)等于零,便得到模型(1)所描述的曲线在=4.51处有拐点,如图所示。上面的模型及图形清楚地表明:1、全国城镇居民最高收入户与困难户人均年收入差距越拉越大,但是近年来,困难户人均年收入基本上是每年全国平均水平的一半。由于全国城镇居民人均年收入逐年提高,因此划分困难户的标准随之变化。由此可见,人均年收入低于全国城镇居民人均年收入一半的居民户为困难户。2、全国城镇居民最高收入户与困难户人均年收入差距在这七年之内的变化可以分为三个阶段:第一阶段是1990年—1992年,从1989年治理整顿后到1992年,收入差距拉大的速度不快;第二阶段是1992年—1994年,在1992年邓小平南巡讲话之后,全国经济出现高速发展,收入差距拉大的速度增加。由于模型(1)描述的曲线在=4.51处有拐点,那么说明在1993年中间速度最快,但从此之后,收入差距拉大的速度将趋于缓和;第三阶段是1994年—1996年,随着整个经济发展出现软着陆,全国城镇居民最高收入户与困难户人均年收入差距拉大的速度出现了缓和。三、结论1、随着我国城镇居民收入水平的继续提高,最高收入户与困难户人均年收入的差距进一步扩大的趋势将持续下去,这符合收入增长的“马太效应”理论,是一种正常的变动趋势。2、城镇居民最高收入户与困难户年均收入差距扩大的速度将趋于缓和。这是全社会收入水平普遍提高,收入将逐步趋于规范化,社会再分配功能日益发挥作用的必须结果。随着城镇居民收入水平的不断提高,社会再分配手段的作用将日益增大,特别是对高收入阶层来说,政府将通过征收所得税的手段对其高额收入加以适当调节,使其与低收入水平的差距不致过大。另外,随着我国社会保障制度的日益完善,也能在对不同收入水平进行适度调节的前提下缩小收入差距,并提高全社会成员的生活质量。附录:案例阅读[摘要]时间序列是一种按照时间顺序取得的一组数据,分析时间序列的常用方法为Bo某Jenkin模型。Bo某-Jenkin模型不以经济理论为指导,依据时间序列自身结构特点建立模型,并利用外推进行预测。本文搜集了2001年1月至2007年9月的入境旅游人数,在此基础上根据Bo某-Jenkin建模的方法,建立了入境旅游人数带的SARIMA模型,对模型进行了适应性检验,比较了预测值与观测值的差别,证明模型是较合理的。[关键词]入境人数时间序列SARIMA模型自相关函数偏自相关函数一、关于本文时间序列模型的说明时间序列是一种是按照时间顺序取得的一组数据,大多数的时间序列存在惯性,通过对这种惯性的分析就可以由现在值和过去值对未来值进行预测。时间序列分析是一种根据动态数据揭示系统动态结构和规律的统计方法,其基本思想是根据随机的时间序列建立能够比较精确的反映时间序列中所包含的动态依存关系的数学模型,并借以对未来进行预测。分析时间序列的方法很多,本文主要讨论Bo某-Jenkin模型。Bo某-Jenkin模型不以经济理论为指导,依据时间序列自身结构特点建立模型,并利用外推进行预测。建立时间序列模型的前提条件时如果时间序列是平稳的,就可以用ARMA模型来刻划它。但通常经济时间序列都存在一定的趋势,是不平稳的时间序列,不能直接建立ARMA(p,q)模型,这时差分运算就是一种较好的处理方式,许多非平稳的时间序列差分后会显示出平稳序列的性质,我们称这个非平稳序列为差分平稳序列。对差分平稳序列可以使用ARIMA模型进行拟合。ARIMA(p,d,q)模型称为求和自回归移动平均模型。其基本结构为式中:B为滞后算子为平稳可逆ARMA(p,q)模型的自回归系数。为平稳可逆的ARMA(p,q)模型和移动平滑系数多项式分别表示自回归阶数、差分阶数、移动平均阶数当时,ARIMA()模型就是ARMA(p,q)模型。当时,ARIMA()模型可以简记为IMA(d,q)模型当时,ARIMA()模型可以简记为ARI(p,d)模型ARIMA模型可以对具有季节效应的序列建模。乘积季节模型是随机模型与ARIMA模型的结合,其形式为:式中:D为周期步长,d为提取趋势信息所用的差分阶数为白噪声序列。该模型简记为ARIMA(p,d,q)某(P,D,Q)二、我国入境旅游人数SARIMA模型的建立自从改革开放以来,我国的旅游事业蓬勃发展,入境旅游人数逐年递增。本文选取了2001年1月至2007年9月入境旅游人数共81个数据,我们利用2001年1月至2007年6月数据进行建模,为检验模型的效果,将2007年7月至9月的3个观测值留意出,作为评价预测精度的参照对象。数据的分析与处理均采用Eview3.1软件。表1200年1月至2007年9月入境旅游人数(单位:万人)(一)数据的平稳性及正态性检验Bo某-Jenkin时序建模是基于平稳时间序列,因此首先检验数据的平稳性。1、绘制观察值序列时序图图1:入境旅游人数序列时序图时序图显示该序列随时间的推移具有明显的递增趋势,又含有周期为12个月的季节波动。2、图2为根据中国入境旅游人数所作的自相关及偏自相关分析图。从自相关图中可以发现,自相关系数衰减很慢,没有很快衰减到零,因此,该序列含有一定的趋势性。图2:入境旅游人数的自相关分析图3、正态性检验图3:Q-Q图从Q-Q图中我们可知该序列具有正态性(二)数据的预处理和模型的识别为了消除异方差,对原数列作对数处理得数列lnrjr,为消除数列的趋性,对lnrjr做一阶差分,得到序列dlnrjr,其时序图和自相关和偏见自相关图如图4-5。图4:序列dlnrjr的时序图图5:dlnrjr的自相关和偏自相关图从图4中可以看出,作对数差分后的序列dlnrjr,其均值在零点附近,原序列的线性递增趋势已被基本消除,该序列是平稳的。从图5中发现,当滞后期K=12时,该序列的自相关系数和偏见自相关系数与零有显著差异,这表明序列具有周期为12个月的季节波动。对序列进行二阶季节差分后发现季节性并没有得到改善,故只做一阶季节差分。经过对数一阶差分,序列的递增趋势基本消除,故d=1,自相关系数和偏见自相关系数均显示出不截尾的性质,同时存在明显的季节效应,可考虑建立乘积季节效应模型(p,d,q)AICSC参数显著性检验(0.57000.5485-2.6720-2.5371没有通过显著性检验0.57040.5327-2.6417-2.4376没有通过显著性检验0.14140.1046-2.0603-1.9357,没有通过显著性检验0.56840.5385-2.6686-2.4985没有通过显著性检验0.56840.5385-2.6686-2.4985没有通过显著性检验从表2中可见,几个模型的AIC和SC均差别不大,其调整后的决定系数除模型三外其余均在0.56附近。综合考虑可选择模型二进行优化,由于不显著,剔除AR(2)重新进行估计。其估计结果均不显著,经反复方试验,我们认为虽然模型二的没有通过检验,但其拟合效果是最优的,因此选择作为估计模型,其估计参数如下:表3:参数估计表VariableCoefficientStd.Errort-StatiticProb.AR(2)0.0715980.1320910.5420370.5899AR(1)0.5864840.1434294.0890200.0001SAR(12)0.8990820.05676315.839220.0000MA(2)-0.4093990.082450-4.9654170.0000MA(1)-0.5763540.082410-6.9937360.0000SMA(12)-0.7239970.127404-5.6827060.0000R-quared0.570418Meandependentvar0.003801AdjutedR-quared0.532736S.D.dependentvar0.090305S.E.ofregreion0.061730Akaikeinfocriterion-2.641709Sumquaredreid0.217202Schwarzcriterion-2.437601Loglikelihood89.21383Durbin-Watontat2.020444模型的调整可决系数为0.5704,AIC为-2.6417,SC为-2.4376,除外,各系数均通过显著性检验。因此可以认为不带截距项的ARIMA模型更适合。其估计方程如下:(四)模型的检验对所建立的模型进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论