版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页码65页/总NUMPAGES总页数65页2022-2023学年北京市海淀区中考数学专项提升仿真模拟试题(二模)一、选一选:1.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B. C. D.2.方程有两个相等实数根,且满足则m的值是()A.-2或3 B.3 C.-2 D.-3或23.在一定条件下,若物体运动的路程s(米)与工夫t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所的路程为()A.88米 B.68米 C.48米 D.28米4.下列三个命题中,是真命题的有()①对角线相等的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.A.3个 B.2个 C.1个 D.0个5.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A4 B.4.5 C.5 D.5.56.AB为⊙O的直径,点C、D在⊙O上.若∠ABD=42°,则∠BCD的度数是()A.122° B.128° C.132° D.138°7.如图,反比例函数的图象与反比例函数的图象交于点(2,1),则使y1>y2的x的取值范围是【】A.0<x<2 B.x>2 C.x>2或-2<x<0 D.x<-2或0<x<28.下列说法中,正确的是()A.“打开电视,正在播放河南旧事节目”是必然B.某种中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前要对各部件进行抽样检查D.了解某种节能灯的运用寿命合适抽样调查9.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,中止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,反复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和工夫(min)的关系如图,为了在上午节下课时(8:45)能喝到不超过50℃的水,则接通电源的工夫可以是当天上午的A.7:20 B.7:30 C.7:45 D.7:5010.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm11.(2017年甘肃省兰州市七里河区杨家桥学校中考数学模仿)如图,在△ABC中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A. B.3 C.2 D.112.如图,在△PQR是⊙O的内接三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOR=()A.60° B.65° C.72° D.75°13.图(1)是一个横断面为抛物线外形的拱桥,当水面在图(1)地位时,拱顶(拱桥洞的点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2 B.y=2x2C.y=﹣0.5x2 D.y=0.5x214.如图,已知∠α的一边在x轴上,另一边点A(2,4),顶点为B(-1,0),则sinα的值是()A. B. C. D.15.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题:16.把一元二次方程化成二次项系数大于零的普通方式是_____________,其中二次项系数是_____________,项系数是____________,常数项是___________.17.如图,在菱形ABCD中,对角线AC、BD相交于点O,且AB=5,AC=6,过点D作AC的平行线交BC的延伸线于点E,则△BDE的面积为________.18.有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图).按照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的_____倍.19.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD程度,BC与程度面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所的路线长为____cm.20.在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=___________.(结果保留根号)三、计算题:21.计算:+|﹣3|﹣2sin60°﹣()2+20160.22.解方程:3x2+2x+1=0四、解答题:23.如图1和图2均是由边长为1小正方形组成的网格,按要求用实线画出顶点在格点上的图形.要求:(1)在图形1中画出一个面积为2.5的等腰三角形ABC;(2)在图2中画出一个直角三角形,使三边长均为不同的在理数.24.某班“2016年联欢会”中,有一个摸奖游戏:有4张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,2张是哭脸,现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同窗去翻纸牌.(1)如今小芳和小霞分别有翻牌机会,若正面是笑脸,则小芳获奖;若正面是哭脸,则小霞获奖,她们获奖的机会相反吗?判断并阐明理由.(2)如果小芳、小明都有翻两张牌的机会.翻牌规则:小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只需出现笑脸就获奖.请问他们获奖的机会相等吗?判断并阐明理由.25.如图,一艘轮船以18海里/时的速度由西向东方向航行,行至A处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,求轮船与灯塔的最短距离.(到0.1,≈1.73)26.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延伸线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的外形,并证明你的结论.27.近年来,我国煤矿事故频频发生,其中危害的是瓦斯,其次要成分是CO.在矿难的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型添加,在第7小时达到值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列成绩:(1)求爆炸前后空气中CO浓度y与工夫x函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只要在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?28.如图,以△ABC的BC边上一点O为圆心的圆,A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.29.如图,抛物线y=ax2+bx+cA(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上能否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请阐明理由;(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上能否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请阐明理由.2022-2023学年北京市海淀区中考数学专项提升仿真模拟试题(二模)一、选一选:1.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B. C. D.【正确答案】B【详解】解:圆柱从上边看是一个圆,从正面看是一个正方形,既可以堵住方形空洞,又可以堵住圆形空洞,故选B.考点:简单几何体的三视图.2.方程有两个相等的实数根,且满足则m的值是()A.-2或3 B.3 C.-2 D.-3或2【正确答案】C【分析】根据根与系数的关系有:x1+x2=m+6,x1x2=m2,再根据x1+x2=x1x2得到m的方程,解方程即可,进一步由方程x2-(m+6)+m2=0有两个相等的实数根得出b2-4ac=0,求得m的值,由相反的解处理成绩.【详解】解:∵x1+x2=m+6,x1x2=m2,x1+x2=x1x2,
∴m+6=m2,
解得m=3或m=-2,
∵方程x2-(m+6)x+m2=0有两个相等的实数根,
∴△=b2-4ac=(m+6)2-4m2=-3m2+12m+36=0
解得m=6或m=-2
∴m=-2.
故选:C.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=,x1•x2=.3.在一定条件下,若物体运动的路程s(米)与工夫t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所的路程为()A.88米 B.68米 C.48米 D.28米【正确答案】A【详解】当t=4时,路程(米).故本题应选A.4.下列三个命题中,是真命题的有()①对角线相等的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.A.3个 B.2个 C.1个 D.0个【正确答案】B【详解】对角线相等的平行四边形是矩形,①错误;三个角是直角的四边形是矩形,②正确;有一个角是直角的平行四边形是矩形,③正确,所以真命题有2个故选B.,5.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.5【正确答案】B【详解】试题分析:根据平行线分线段成比例可得,然后根据AC=4,CE=6,BD=3,可代入求解DF=4.5.故选B考点:平行线分线段成比例6.AB为⊙O的直径,点C、D在⊙O上.若∠ABD=42°,则∠BCD的度数是()A.122° B.128° C.132° D.138°【正确答案】C【详解】试题分析:首先连接AD,由直径所对的圆周角是直角,可得∠ADB=90°,继而求得∠A的度数,然后由圆的内接四边形的性质,求得答案.解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠ABD=42°,∴∠A=90°﹣∠ABD=48°,∴∠BCD=180°﹣∠A=132°.故选C.考点:圆周角定理;圆内接四边形的性质.7.如图,反比例函数的图象与反比例函数的图象交于点(2,1),则使y1>y2的x的取值范围是【】A.0<x<2 B.x>2 C.x>2或-2<x<0 D.x<-2或0<x<2【正确答案】D【分析】先根据反比例函数与反比例函数的性质求出B点坐标,由函数图象即可得出结论.【详解】∵反比例函数与反比例函数的图象均关于原点对称,∴A、B两点关于原点对称.∵A(2,1),∴B(-2,-1).∵由函数图象可知,当0<x<2或x<-2时函数y1的图象在y2的上方,∴使y1>y2的x的取值范围是x<-2或0<x<2.故选D.8.下列说法中,正确的是()A.“打开电视,正在播放河南旧事节目”是必然B.某种中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前要对各部件进行抽样检查D.了解某种节能灯的运用寿命合适抽样调查【正确答案】D【详解】必然指在一定条件下一定发生的.不可能是指在一定条件下,一定不发生的.不确定即随机是指在一定条件下,可能发生也可能不发生的.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.【分析】解:A.“打开电视,正在播放河南旧事节目”是随机,故A选项错误;B.某种中奖概率为10%是指买十张可能中奖,也可能不中奖,故B选项错误;C.神舟飞船发射前需求对零部件进行全面调查,故C选项错误;D.了解某种节能灯的运用寿命,具有破坏性合适抽样调查,故D选项正确.故选:D.本题考查了调查的方式和的分类.不易采集到数据的调查要采用抽样调查的方式;必然指在一定条件下一定发生的.不可能是指在一定条件下,一定不发生的.不确定即随机是指在一定条件下,可能发生也可能不发生的.9.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,中止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,反复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和工夫(min)的关系如图,为了在上午节下课时(8:45)能喝到不超过50℃的水,则接通电源的工夫可以是当天上午的A.7:20 B.7:30 C.7:45 D.7:50【正确答案】A【详解】∵开机加热时每分钟上升10℃,∴从30℃到100℃需求7分钟.设函数关系式为:y=k1x+b,将(0,30),(7,100)代入y=k1x+b得k1=10,b=30.∴y=10x+30(0≤x≤7).令y=50,解得x=2;设反比例函数关系式为:,将(7,100)代入得k=700,∴.将y=30代入,解得.∴(7≤x≤).令y=50,解得x=14.∴饮水机的一个循环周期为分钟.每一个循环周期内,在0≤x≤2及14≤x≤工夫段内,水温不超过50℃.逐一分析如下:选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤工夫段内,故可行;选项B:7:30至8:45之间有75分钟.75﹣×3=5,不在0≤x≤2及14≤x≤工夫段内,故不可行;选项C:7:45至8:45之间有60分钟.60﹣×2=≈13.3,不在0≤x≤2及14≤x≤工夫段内,故不可行;选项D:7:50至8:45之间有55分钟.55﹣×2=≈8.3,不在0≤x≤2及14≤x≤工夫段内,故不可行.综上所述,四个选项中,唯有7:20符合题意.故选A.10.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm【正确答案】D【详解】设原铁皮的边长为xcm,则(x-6)(x-6)×3=300,解得:x=16或x=-4(舍去),即原铁皮的边长为16cm.11.(2017年甘肃省兰州市七里河区杨家桥学校中考数学模仿)如图,在△ABC中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A. B.3 C.2 D.1【正确答案】D【详解】试题解析:由题意得:DE⊥AC,∴∠DEA=90°,∵∠C=∠DEA,∵∠A=∠A,∴△AED∽△ACB,∴=,∵A′为CE的中点,∴CA′=EA′,∴CA′=EA′=AE,∴==,∴DE=1.故选D12.如图,在△PQR是⊙O的内接三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOR=()A.60° B.65° C.72° D.75°【正确答案】D【分析】作辅助线连接OD,根据题意求出∠POQ和∠AOD的,利用平行关系求出∠AOP度数,即可求出∠AOQ的度数.【详解】解:连接OD,AR,∵△PQR是⊙O的内接正三角形,∴∠PRQ=60°,∴∠POQ=2×∠PRQ=120°,∵四边形ABCD是⊙O的内接正方形,∴△AOD为等腰直角三角形,∴∠AOD=90°,∵BC∥RQ,AD∥BC,∴AD∥QR,∴∠ARQ=∠DAR,∴,∵△PQR是等边三角形,∴PQ=PR,∴,∴,∴∠AOP=∠AOD=45°,所以∠AOQ=∠POQ-∠AOP=120°-45°=75°.故选D.考点:正多边形和圆.13.图(1)是一个横断面为抛物线外形的拱桥,当水面在图(1)地位时,拱顶(拱桥洞的点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2 B.y=2x2C.y=﹣0.5x2 D.y=0.5x2【正确答案】C【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【详解】由题意可得,设抛物线解析式为:y=ax2,由图意知抛物线过(2,–2),故–2=a×22,解得:a=–0.5,故解析式为y=﹣0.5x2,选C.根据题意得到抛物线点的坐标,求解函数解析式是处理本题的关键.14.如图,已知∠α的一边在x轴上,另一边点A(2,4),顶点为B(-1,0),则sinα的值是()A. B. C. D.【正确答案】D【详解】如图:过点A作垂线AC⊥x轴于点C.则AC=4,BC=3,故由勾股定理得AB=5.si==.故选D.15.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个【正确答案】B【详解】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选:B.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;项系数b和二次项系数a共同决定对称轴的地位:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点地位:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:16.把一元二次方程化成二次项系数大于零的普通方式是_____________,其中二次项系数是_____________,项系数是____________,常数项是___________.【正确答案】①.②.1③.2④.【分析】经过去括号,移项,可以得到一元二次方程的普通方式,然后写出二次项系数,项系数和常数项.【详解】解:去括号:1-x2=2x,移项:x2+2x-1=0,∴二次项系数是:1,项系数是:2,常数项是:-1,故答案分别是:x2+2x-1=0,1,2,-1.本题考查的是一元二次方程的普通方式,经过去括号,移项,可以得到一元二次方程的普通方式,然后写出二次项系数,项系数和常数项.17.如图,在菱形ABCD中,对角线AC、BD相交于点O,且AB=5,AC=6,过点D作AC的平行线交BC的延伸线于点E,则△BDE的面积为________.【正确答案】24【详解】解:∵AD∥BE,AC∥DE,∴四边形ACED是平行四边形,∴AC=DE=6,∵在菱形ABCD中,对角线AC、BD相交于点O∴OA=OC=AC=3,AC⊥BD,∴BD⊥DE,在RT△BCO中,BO==4,∴BD=8,∴S△BDE=DE•BD=24.故2418.有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图).按照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的_____倍.【正确答案】【详解】设原等腰直角三角形三条边长分别为:a、a、a,原周长为(2+)a;折叠后三角形三边长分别为:a、a、a,周长为(+1)a;折叠两次后三角形三边长分别为:a、a、a,周长为(1+)a;……折叠n次后三角形周长为(2+)a×()n.所以折叠四次后三角形的周长为:(2+)a×()4=(2+)a,是原三角形周长的.故答案为.点睛:此题关键在于找出每折叠后三角形的周长的变化规律.19.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD程度,BC与程度面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所的路线长为____cm.【正确答案】【详解】试题解析:如下图,画出圆盘滚动过程中圆心挪动路线的分解图象.可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O1O2,圆弧,线段O3O4四部分构成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC与AB延伸线夹角为60°,O1是圆盘在AB上滚动到与BC相切时的圆心地位,∴此时⊙O1与AB和BC都相切.则∠O1BE=∠O1BF=60度.此时Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=cm.∴OO1=AB-BE=(60-)cm.∵BF=BE=cm,∴O1O2=BC-BF=(40-)cm.∵AB∥CD,BC与程度夹角为60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.则圆盘在C点处滚动,其圆心所的路线为圆心角为60°且半径为10cm的圆弧.∴的长=×2π×10=πcm.∵四边形O3O4DC是矩形,∴O3O4=CD=40cm.综上所述,圆盘从A点滚动到D点,其圆心的路线长度是:(60-)+(40-)+π+40=(140-+π)cm.20.在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=___________.(结果保留根号)【正确答案】【分析】先延伸EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【详解】延伸EF和BC,交于点G.∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==9,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF.∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=9.由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC,∴.设CG=x,DE=2x,则AD=9+2x=BC.∵BG=BC+CG,∴9=9+2x+x,解得x=3-3,∴BC=9+2(3-3)=6+3.故答案为6+3.考点:矩形的性质;等腰三角形的判定;类似三角形的判定与性质.三、计算题:21.计算:+|﹣3|﹣2sin60°﹣()2+20160.【正确答案】1【详解】试题分析:先分别对根式、值、三角函数、乘方进行运算,再进行加减运算.试题解析:原式=2+3--2×-3+1=2+3---3+1=1.点睛:(1)a0=1,a≠0;(2)熟记角三角函数值.22.解方程:3x2+2x+1=0.【正确答案】原方程没有实数根.【详解】试题分析:利用公式法解方程即可.试题解析:∵a=3,b=2,c=1,∴b2-4ac=4-4×3×1=-8<0.∴原方程没有实数根.四、解答题:23.如图1和图2均是由边长为1的小正方形组成的网格,按要求用实线画出顶点在格点上的图形.要求:(1)在图形1中画出一个面积为2.5的等腰三角形ABC;(2)在图2中画出一个直角三角形,使三边长均为不同的在理数.【正确答案】图形见解析【详解】试题分析:(1)要画出面积为2.5的等腰三角形,即要画出腰长为的等腰直角三角形,由网格图不难得出AB=,过B作CB⊥AB,且使BC=AB即可确定点C,将A、B、C三点连接;(2)画出边长分别为、3、2的三角形即可.试题解析:(1)如图1所示,△ABC为所求三角形;(2)如图2所示,直角三角形为所求三角形.点睛:此类成绩充分利用网格点勾股定理求出对应边的长度是关键.24.某班“2016年联欢会”中,有一个摸奖游戏:有4张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,2张是哭脸,现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同窗去翻纸牌.(1)如今小芳和小霞分别有翻牌机会,若正面是笑脸,则小芳获奖;若正面是哭脸,则小霞获奖,她们获奖的机会相反吗?判断并阐明理由.(2)如果小芳、小明都有翻两张牌的机会.翻牌规则:小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只需出现笑脸就获奖.请问他们获奖的机会相等吗?判断并阐明理由.【正确答案】(1)相反,理由见解析;(2)机会不相等,理由见解析【详解】试题分析:(1)由于有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻牌正面是笑脸的就获奖,正面是哭脸的不获奖,所以她们获奖的概率都是,获奖的机会相反;(2)先列举出小芳和小明翻牌的所无情况,然后分别计算出她们获奖的概率,比较她们获奖的概率,若概率相等,那么她们的获奖机会相等,若概率不相等,那么她们获奖机会不相等.试题解析:(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻牌正面是笑脸的就获奖,正面是哭脸的不获奖,∴她们获奖的概率都是,∴她们获奖机会相反;(2)他们获奖机会不相等,理由如下:小芳:张第二张笑1笑2哭1哭2笑1笑1,笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2笑2,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭1,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2哭2,哭2∵共有16种等可能的结果,翻开的两张纸牌中只需出现笑脸的有12种情况,∴P(小芳获奖)==;小明:张第二张笑1笑2哭1哭2笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2∵共有12种等可能的结果,翻开的两张纸牌中只需出现笑脸的有10种情况,∴P(小明获奖)==,∵P(小芳获奖)≠P(小明获奖),∴他们获奖的机会不相等.点睛:小芳先翻一张,放回后再翻一张,所以她次翻出的牌有4种可能,第二次翻出的牌仍是4种可能;小明同时翻开两张纸牌,那么可以理解为先翻一张,再翻第二张,与小芳不同的是,小明次翻牌有4种可能,第二次翻牌不可能翻到次翻开的那张,因此只要3种可能.25.如图,一艘轮船以18海里/时的速度由西向东方向航行,行至A处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,求轮船与灯塔的最短距离.(到0.1,≈1.73)【正确答案】轮船与灯塔的最短距离约为8.2海里.【详解】试题分析:过点P作PC⊥AB于C点,即PC的长为轮船与灯塔的最短距离,根据题意可得AB=6海里,BC=PC,在Rt△PAC中,tan30°==,由此求得PC的长,即可得轮船与灯塔的最短距离.试题解析:解:过点P作PC⊥AB于C点,即PC的长为轮船与灯塔的最短距离,根据题意,得AB=18×=6,∠PAB=90°﹣60°=30°,∠PBC=90°﹣45°=45°,∠PCB=90°,∴PC=BC,在Rt△PAC中,tan30°==,即=,解得PC=3+3≈8.2(海里),∴轮船与灯塔的最短距离约为8.2海里.26.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延伸线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF外形,并证明你的结论.【正确答案】(1)见解析(2)见解析【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形.27.近年来,我国煤矿事故频频发生,其中危害的是瓦斯,其次要成分是CO.在矿难的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型添加,在第7小时达到值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列成绩:(1)求爆炸前后空气中CO浓度y与工夫x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只要在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?【正确答案】(1),自变量x的取值范围是x>7;(2)撤离的最小速度为1.5km/h;(3)矿工至少在爆炸后73.5小时能才下井.【详解】解:(1)由于爆炸前浓度呈直线型添加,所以可设y与x的函数关系式为由图象知过点(0,4)与(7,46)∴.解得,∴,此时自变量的取值范围是0≤≤7.(不取=0不扣分,=7可放在第二段函数中)由于爆炸后浓度成反比例下降,所以可设y与x的函数关系式为.由图象知过点(7,46),∴.∴,∴,此时自变量x的取值范围是x>7.(2)当=34时,由得,6x+4=34,x="5".∴撤离的最长工夫为7-5=2(小时).∴撤离的最小速度为3÷2="1.5(km/h)"(3)当=4时,由得,=80.5,80.5-7=73.5(小时).∴矿工至少在爆炸后73.5小时能才下井(1)由于爆炸前浓度呈直线型添加,所以可设y与x的函数关系式为用待定系数法求得函数关系式,由图像得自变量的取值范围;由于爆炸后浓度成反比例下降,过点(7,46)即可求出函数关系式,由图像得自变量的取值范围.(2)将=34代入函数求得工夫,即可求得速度(3)将=4代入反比例函数求得x,再减7求得28.如图,以△ABC的BC边上一点O为圆心的圆,A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【正确答案】(1)证明见解析;(2)【分析】(1)连结OA、OD,如图,根据垂径定理的推理,由D为BE的下半圆弧的中点得到OD⊥BE,则∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根据对顶角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC是⊙O的切线;(2)由于圆的半径R=5,EF=3,则OF=2,然后在Rt△ODF中利用勾股定理计算DF的长.【详解】解:(1)连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF=.本题考查切线的判定.29.如图,抛物线y=ax2+bx+cA(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上能否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请阐明理由;(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上能否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请阐明理由.【正确答案】(1)y=x2﹣x+3;(2)在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9;(3)点M的坐标为或.【分析】(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解;(2)A、B关于对称轴对称,连接BC,则BC与对称轴的交点即为所求的点P,此时PA+PC=BC,四边形PAOC的周长最小值为:OC+OA+BC;根据勾股定理求得BC,即可求得;(3)分两种情况分别讨论,即可求得.【详解】(1)根据题意设抛物线的解析式为y=a(x﹣1)(x﹣4),代入C(0,3)得3=4a,解得a=,y=(x﹣1)(x﹣4)=x2﹣x+3,所以,抛物线的解析式为y=x2﹣x+3.(2)∵A、B关于对称轴对称,如图1,连接BC,∴BC与对称轴的交点即为所求的点P,此时PA+PC=BC,∴四边形PAOC的周长最小值为:OC+OA+BC,∵A(1,0)、B(4,0)、C(0,3),∴OA=1,OC=3,BC==5,∴OC+OA+BC=1+3+5=9;∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9.(3)∵B(4,0)、C(0,3),∴直线BC的解析式为y=﹣x+3,①当∠BQM=90°时,如图2,设M(a,b),∵∠CMQ>90°,∴只能CM=MQ=b,∵MQ∥y轴,∴△MQB∽△COB,∴,即,解得b=,代入y=﹣x+3得,=﹣a+3,解得a=,∴M;②当∠QMB=90°时,如图3,∵∠CMQ=90°,∴只能CM=MQ,设CM=MQ=m,∴BM=5﹣m,∵∠BMQ=∠COB=90°,∠MBQ=∠OBC,∴△BMQ∽△BOC,∴,解得m=,作MN∥OB,∴,即∴MN=,CN=,∴ON=OC﹣CN=3﹣=,∴M,综上,在线段BC上存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形,点M的坐标为或.考点:1、待定系数法求二次函数的解析式,2、轴对称﹣最短路线成绩,3、等腰三角形的性质2022-2023学年北京市海淀区中考数学专项提升仿真模拟试题(三模)一、选一选:1.如图,是由相反小正方体组成的立体图形,它的主视图为()A.B.C.D.2.下列一元二次方程中有两个不相等的实数根的方程是()A. B.C. D.3.在同一坐标系中,函数与二次函数的图象可能是().A.B.C.D.4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()
A.4 B.8 C.10 D.125.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=【】A.2:5 B.2:3 C.3:5 D.3:26.如图,⊙O的半径为2,点A为⊙O上一点,OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A. B. C.1 D.27.若函数y=x2m+1为反比例函数,则m的值是()A.1 B.0 C.0.5 D.-18.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A. B. C. D.9.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.不断不变 B.先增大后减小 C.先减小后增大 D.先增大后不变10.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=19611.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为时,△ABE与以D、M、N为顶点的三角形类似.A B. C.或 D.或12.正六边形的边心距为,则该正六边形的边长是()A. B.2 C.3 D.213.图(1)是一个横断面为抛物线外形的拱桥,当水面在图(1)地位时,拱顶(拱桥洞的点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2 B.y=2x2C.y=﹣0.5x2 D.y=0.5x214.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A. B. C. D.15.将函数y=x2+x的图象向右平移a(a>0)个单位,得到函数y=x2-3x+2的图象,则a的值为()A.1 B.2 C.3 D.4二、填空题:16.方程x2﹣3x+1=0的项系数是_____.17.如图,四边形是正方形,延伸到,使,则__________°.18.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5m,CD=4.5m,点P到CD的距离为2.7m,则AB与CD间的距离是m.19.如图所示的两段弧中,位于上方的弧半径为,下方的弧半径为,则____.(填“>“,”“=”“<”)20.如图,正方形ABCD与正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),则位似坐标是_____.三、计算题:21.计算:|1﹣|+3tan30°﹣(﹣5)0﹣(﹣)﹣1.22.(x+3)(x﹣1)=12(用配方法)四、解答题:23.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转旋转180°,画出旋转后对应△C;平移△ABC,若A的对应点的坐标为(0,-4),画出平移后对应的△;(2)若将△C绕某一点旋转可以得到△,请直接写出旋转的坐标;(3)在轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.24.甲乙两人玩摸球游戏:一个不透明的袋子中装有相反大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请阐明理由.25.如图,贵阳市某中学数学小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一程度线上,求建筑物BC的高.(结果保留整数)26.如图,在中,,过点C的直线,D为边上一点、过点D作,交直线于E,垂足为F,连接、.(1)求证:;(2)当D在中点时,四边形是什么四边形?阐明你理由;(3)若D为中点,则当______时,四边形是正方形(直接写出答案).27.心思学家研讨发现,普通情况下,一节课40分钟中,先生的留意力随教师讲课的变化而变化.开始上课时,先生的留意力逐渐加强,两头有一段工夫先生的留意力保持较为理想的波动形态,随后先生的留意力开始分散.实验分析可知,先生的留意力指数y随工夫x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)求出线段AB,曲线CD的解析式,并写出自变量的取值范围;(2)开始上课后第五分钟时与第三十分钟时相比较,何时先生的留意力更集中?(3)一道数学竞赛题,需求讲19分钟,为了较好,要求先生的留意力指数达到36,那么适当安排,老师能否在先生留意力达到所需的形态下讲解完这道标题?28.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O直径为10,求AB的长度.29.如图,抛物线y=ax2+bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.女女(1)求该抛物线的解析式;(2)当动点P运动到何处时,BP2=BD•BC;(3)当△PCD的面积时,求点P的坐标.2022-2023学年北京市海淀区中考数学专项提升仿真模拟试题(三模)一、选一选:1.如图,是由相反小正方体组成的立体图形,它的主视图为()A.B.C.D.【正确答案】D【分析】找到从正面看所得到的图形即可.【详解】解:从正面看可得到共有4列,每一列小正方形的个数从左到右依次为3、1、1、2,观察只要D选项符合,故选D.本题考查了三视图的知识,纯熟掌握主视图是从物体的正面看得到的图形是解题的关键.2.下列一元二次方程中有两个不相等的实数根的方程是()A. B.C. D.【正确答案】B【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】A、△=0,方程有两个相等的实数根;B、△=4+76=80>0,方程有两个不相等的实数根;C、△=-16<0,方程没有实数根;D、△=1-4=-3<0,方程没有实数根.故选:B.3.在同一坐标系中,函数与二次函数的图象可能是().A. B. C. D.【正确答案】D【详解】试题分析:A.由直线与y轴的交点在y轴的负半轴上可知,<0,错误;B.由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.考点:1.二次函数的图象;2.函数的图象.4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()
A.4 B.8 C.10 D.12【正确答案】B【详解】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B.5.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=【】A.2:5 B.2:3 C.3:5 D.3:2【正确答案】B【详解】∵四边形ABCD是平行四边形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故选B6.如图,⊙O的半径为2,点A为⊙O上一点,OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A. B. C.1 D.2【正确答案】C【分析】由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,在Rt△BOD中,利用角的三角函数值即可求出OD.【详解】解:∵OD⊥弦BC,∴∠BDO=90°,∵∠BOD=∠BAC=60°,∴OD=OB=1,故答案选:C.本题次要考查了圆周角定理、垂径定理、角的三角函数计算.7.若函数y=x2m+1为反比例函数,则m的值是()A.1 B.0 C.0.5 D.-1【正确答案】D【详解】解:由于函数为反比例函数,故选D.反比例函数有三种方式:8.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A. B. C. D.【正确答案】C【详解】试题分析:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:.故选C.考点:1.列表法或树状图法;2.概率.9.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.不断不变 B.先增大后减小 C.先减小后增大 D.先增大后不变【正确答案】A【详解】作CD⊥AB交AB于点D,则S△ACD=,∵AC=BC,∴AD=BD,∴S△ACD=S△BCD,∴S△ABC=2S△ACD=2×=k.∴△ABC的面积不变.故选A.点睛:本题次要理解并运用反比例函数k的几何意义.10.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【正确答案】C【详解】试题分析:普通增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:50+50(1+x)+50(1+x)2=196.故选C.11.如图,正方形ABCD边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为时,△ABE与以D、M、N为顶点的三角形类似.A. B. C.或 D.或【正确答案】C【详解】∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D.M、N为顶点的三角形类似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM2+DM2=1,解得DM=;②DM与BE是对应边时,DM=DN,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM=.∴DM为或时,△ABE与以D.M、N为顶点的三角形类似.故选C.点睛:本题考查了类似三角形的性质、正方形的性质以及勾股定理的运用,掌握类似三角形的对应边的比相等是解题的关键,留意分情况讨论思想与数形思想在本题中的运用.12.正六边形的边心距为,则该正六边形的边长是()A. B.2 C.3 D.2【正确答案】B【详解】试题解析:如图:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.考点:1.正多边形和圆;2.勾股定理.13.图(1)是一个横断面为抛物线外形的拱桥,当水面在图(1)地位时,拱顶(拱桥洞的点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2 B.y=2x2C.y=﹣0.5x2 D.y=0.5x2【正确答案】C【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【详解】由题意可得,设抛物线解析式为:y=ax2,由图意知抛物线过(2,–2),故–2=a×22,解得:a=–0.5,故解析式为y=﹣0.5x2,选C.根据题意得到抛物线点的坐标,求解函数解析式是处理本题的关键.14.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A. B. C. D.【正确答案】C【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD,进而利用锐角三角函数关系得出答案.【详解】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD===,只要选项C错误,符合题意.故选:C.此题次要考查了锐角三角函数的定义,得出∠α=∠ACD是解题关键.15.将函数y=x2+x的图象向右平移a(a>0)个单位,得到函数y=x2-3x+2的图象,则a的值为()A.1 B.2 C.3 D.4【正确答案】B【详解】由于,∴顶点横坐标为:−;∵,∴顶点的横坐标为:;∴a=−(−)=2.点睛:求得原抛物线的顶点的横坐标及新抛物线的顶点的横坐标,a=新抛物线顶点的横坐标-原抛物线顶点的横坐标.二、填空题:16.方程x2﹣3x+1=0的项系数是_____.【正确答案】-3【详解】x2-3x+1=0项系数是-3.故答案为-3.点睛:一元二次方程ax2+bx+c=0(a≠0)二次项系数为a,项系数为b,常数项为c.17.如图,四边形是正方形,延伸到,使,则__________°.【正确答案】22.5【分析】根据正方形的性质求出∠CAB=∠ACB=45°,再根据AC=AE求出∠ACE=67.5°,由此即可求出答案.【详解】∵四边形ABCD是正方形,∴∠DAB=∠DCB=90°,∵AC是对角线,∴∠CAB=∠ACB=45°,∵AC=AE,∴∠ACE=67.5°,∴∠BCE=∠ACE-∠ACB=22.5°,故22.5°.此题考查正方形的性质,等腰三角形的性质,三角形的内角和定理,是一道较为基础的题型.18.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5m,CD=4.5m,点P到CD的距离为2.7m,则AB与CD间的距离是m.【正确答案】1.8【详解】由AB∥CD,可得△PAB∽△PCD,设CD到AB距离为x,根据类似三角形的性质可得,即,解得x=1.8m.所以AB离地面的距离为1.8m,故答案为1.8.19.如图所示的两段弧中,位于上方的弧半径为,下方的弧半径为,则____.(填“>“,”“=”“<”)【正确答案】<.【详解】试题分析:如图,分别在两段弧上各选三个点,作出过这三个点的圆,显然.<,故答案为<.考点:确定圆条件.20.如图,正方形ABCD与正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),则位似的坐标是_____.【正确答案】(0,),(﹣6,7).【详解】由图可得:B(-2,5),C(-2,3),F(3,1),当B、F是对应点时,E、A是对应点,故位似位于直线BF与y轴的交点处,设直线BF的解析式为:y=kx+b,则,解得,∴直线BF的解析式是:y=-x+,则x=0时,y=,∴位似是(0,);当C、E是对应点时,D、F是对应点,故位似位于直线CE与直线DF的交点处,设直线CE的解析式为:y=ax+c,则,解得,∴直线CE的解析式是:y=-x+1,设直线DF的解析式为:y=dx+e,则,解得,∴直线DF的解析式是:y=-x+3,,解得:,∴位似是(-6,7);故答案为(0,),(-6,7).点睛:已知两个图形位似,要确似,若已知对应点,那么对应点的连线的交点即为位似;若对应点未知,要对对应点进行分类讨论.三、计算题:21.计算:|1﹣|+3tan30°﹣(﹣5)0﹣(﹣)﹣1.【正确答案】2【详解】试题分析:先对值、三角函数、幂进行运算,再进行加减运算.试题解析:解:原式=-1+3×-1-(-3)=-1++3=2.点睛:(1)熟记锐角三角函数值,去值的时分留意符号成绩;(2)a0=1(a≠0),=.22.(x+3)(x﹣1)=12(用配方法)【正确答案】x1=3,x2=﹣5【详解】试题分析:先将方程左边去括号,再将常数项移到方程左边,然后方程左右两边同时加上项系数一半的平方,解出x即可.试题解析:将原方程整理,得x2+2x=15,两边都加上12,得x2+2x+12=15+12,即(x+1)2=16,开平方,得x+1=±4,即x+1=4,或x+1=-4,∴x1=3,x2=-5.点睛:用配方法进行配方时先将二次项系数化为1,然后方程左右两边同时加上项系数一半的平方.四、解答题:23.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转旋转180°,画出旋转后对应的△C;平移△ABC,若A的对应点的坐标为(0,-4),画出平移后对应的△;(2)若将△C绕某一点旋转可以得到△,请直接写出旋转的坐标;(3)在轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.【正确答案】(1)如下图;(2);(3)(-2,0).【分析】(1)根据网格结构找出点A、B以点C为旋转旋转180°的对应点A1、B1的地位,然后与点C依次连接即可;再根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的地位,然后依次连接即可;
(2)根据对称的性质,连接两对对应顶点,交点即为旋转,然后写出坐标即可;
(3)根据轴对称确定最短路线成绩,找出点A关于x轴的对称点A′的地位,然后连接A′B与x轴的交点即为点P.【详解】(1)画出△A1B1C与△A2B2C2如图(2)如图所示,旋转的坐标为:(,-1)(3)如图所示,点P的坐标为(-2,0).24.甲乙两人玩摸球游戏:一个不透明的袋子中装有相反大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请阐明理由.【正确答案】(1);(2)公平【详解】试题分析:(1)袋子中装有相反大小的3个球,球上分别标有数字1,2,3,甲摸到标有数字3的球的概率为;(2)列举出所无情况,分别计算出甲、乙两人摸到的数字较大的概率,若概率相等,则公平;若不相等,则不公平.试题解析:解:(1)∵袋子中装有相反大小的3个球,球上分别标有数字1,2,3,∴甲摸到标有数字3的球的概率为;(2)游戏公平,理由如下:列举一切可能:由表可知:甲获胜的概率=,乙获胜的概率=,所以游戏是公平的.点睛:(1)掌握列表法、画树状图法;(2)要判断游戏能否公平,即比较概率能否相等.25.如图,贵阳市某中学数学小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一程度线上,求建筑物BC的高.(结果保留整数)【正确答案】21m【详解】试题分析:过点D作DH⊥BC于点M,得出四边形DECH是矩形,所以DH=EC,DE=HC,设BC的长度为xm,则BH=(x-5)m,由∠BDH=30°可以求出∠DBH=60°,进而表示出DH=(x-5),然后表示出AC=(x-5)-10,由BC=tan50°·AC列出方程,解出x即可.试题解析:过点D作DH⊥BC于点M,则四边形DHCE是矩形,DH=EC,DE=HC,设BC的高度为xm,则BH=(x-5)m,∵∠BDH=30°,∴∠DBH=60°,∴DH=BH·tan60°=(x-5),∴AC=EC-EA=(x-5)-10,∵∠BAC=50°,∴BC=tan50°·AC,∴x=tan50°·[(x-5)],解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度金融服务合同:企业信贷与融资咨询
- 2024年度临时聘用工程师合同模板
- 2024年度版权许可使用特别规定合同
- 2024年度铲车节能改造合同:设备升级以提高能源效率
- 2024年度市场营销策划与商业秘密保护合同
- 非营利组织志愿者试用期合同
- 2024年度成都广告制作与发布合同
- 2024年度原材料供应合同的价格波动条款
- 2024年度知识产权许可与技术秘密保密合同协议书
- 2024汽车维修行业供应链管理承包合同
- (高清版)JGT 486-2015 混凝土用复合掺合料
- 快递主管岗位职责
- 医疗差错、纠纷、事故登记表
- MT-T 5017-2017民用运输机场航站楼安防监控系统工程设计规范
- 七年级第一次期中家长会课件
- 货运公司消防培训
- 一例下肢静脉溃疡的伤口个案护理
- 部编历史九下《第4课 日本明治维新》课件
- 储能项目居间服务协议书
- 警察校园突发事件安全讲座
- 煤矿消防知识培训课件
评论
0/150
提交评论