版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1FreeandForcedVibrationResponseofTwoDegreeofFreedomSystems
withDamping2SystemswithViscousDampingExtendingtheprevioussectionstoincludetheeffectsofviscousdamping(dashpots)3ViscousDampinginMDOFSystemsTwobasicchoicesforincludingdampingModalDampingAttributesomeamounttoeachmodebasedonexperience,i.e.,anartfulguessorEstimatedampingduetoviscoelasticityusingsomeapproximationmethodModelthedampingmechanismdirectly(hardandstillanareaofresearch-goodforphysicistsbutengineersneedmodelsthatarecorrectenough).4ModalDampingMethodSolvetheundampedvibrationproblemasbeforeHerethemodeshapesandeigenvectorsarerealvaluedandformorthonormalsets,evenforrepeatednaturalfrequencies(knownbecauseissymmetric)5ModalDamping(cont)DecouplesystembasedonMandK,i.e.,usethe“undamped”modesAttributesomezi(zeta)toeachmodeofthedecoupledsystem(aguess.Notknownbeforehand.Canbetestedwithgrossdatalikex):
Alternately:here6TransformBacktoGetPhysicalSolutionUsemodaltransformtoobtainmodalinitialconditionsandcomputeAiandFi:Withr(t)known,usetheinversetransformtorecoverthephysicalsolution:7ModalDampingbyModeSummationCanalsousemodesummationapproachAgain,modesarefromundampedsystemThehigherthefrequency,thesmallertheeffect(becauseoftheexponentialterm).Sojustfewfirstmodesareenough.8Computeq(t),TransformbackTogettheproperinitialconditionsuse:Usetheabovetocomputeq(t)andthen:theresponseinphysicalcoordinates.9ExampleConsider:Subjecttoinitialconditions:ExperimentsdonotgiveC.Theyprovidezeta(inmodalcoordinates)bythehalfpowermethod.Computethesolutionassumingmodaldampingof:10
Computethemodaldecomposition
L=sqrt(M)Computethemodalinitialconditions:11Computethemodalsolutions:Yields:Thenusex(t)=Sr(t)12So,firstseparatesolutionsinthemodalcoordinateswerefoundandthenthemodeswereassembledbytheuseofS.Theresponseinthephysicalcoordinatesisthereforeacombinationofthemodalresponsesjustasintheundampedcase.13LumpedDampingmodelsInsomecases(FEM,machinemodeling),thedampingmatrixisdetermineddirectlyfromtheequationsofmotion.Thenouranalysismuststartwith:Subjectto14GenericExample:IfthedampingmechanismsareknownthenSumforcestofindtheequationsofmotionFreeBodyDiagram:15MatrixformofEquationsofMotion:TheCandKmatriceshavethesameform.Itfollowsfromthesystemitselfthatconsisteddampingandstiffnesselementsinasimilarmanner.16AQuestionofmatrixdecouplingCanwedecouplethesystemwiththesamecoordinatetransformationsasbefore?Ingeneral,thesecannotbedecoupledsinceKandCcannotbediagonalizedsimultaneously17ALittleMatrixTheory18MoreMatrixStuffandNormalModeSystems19ProportionalDamping20ProportionalDamping(cont)21ForcedResponse:theresponseofan2dofsystemtoaforcingtermk1m1x1m2x2k2F1F2c1c2
22IfthesystemofequationsdecouplethenthemethodsofSDOFcanbeappliedSDOF23Withthemodalequationinhandthegeneralsolutionisgiven24Theappliedforceisdistributedacrosstheallofthemodesexceptinaspecialcase.AnexcitationonasinglephysicalDOFmay“spread”toallmodalDOFs(oneFgeneratesmanyf’s)ItisactuallypossibletodriveaMDOFsystematoneofitsnaturalfrequenciesandnotexperienceresonantresponse(anunusualcircumstance)25Example:
A2-dofsystem26Computethemassnormalizedstiffnessmatrixanditseigensolution27Transformthedampingmatrix,theforcingfunctionandwritedownthemodalequations28ComputethemodalvaluesusingthesingledegreeoffreedomformulasThemodaldampingratiosanddampednaturalfrequenciesarecomputedusingtheusualformulasandthecoefficientsfromthetermsinthemodalequations:29UseSDOFformulafortheparticularsolutionNowtransformbacktophysicalcoordinatesNotethattheforceeffectsbothdegreesoffreedomeventhoughitisappliedtoone.30TheFrequencyResponseofeachmodeisplotted:012345-30-20-1001020Frequency(w)Amplitude(dB)R1(w)/f1(w))R2(w)/f2(w))Thisgraphshowstheamplitudeofeachmodeduetoaninputmodalforcef1andf2.Aforceappliedtomass#2F2willcontributetobothmodalforces!31Thefrequencyresponseofeachdegreeoffreedomisplotted012345-50-40-30-20-10010Frequency(w)Amplitude(dB)X1(w)/F2(w))X2(w)/F2(w))Thisgraphshowstheamplitudeofeachmassduetoaninputforceonmass#2.Eachmassisexcitedbytheforceonmass#2Bothmassesareeffectedbybothmodes32ResonanceformultipledegreeoffreedomsystemscanoccurateachofthesystemsnaturalfrequenciesNotethatthefrequencyresponseofthepreviousexampleshowstwopeaks
IfintheoddcasethatbisorthogonaltooneofthemodeshapesthenresonanceinthatmodemaynotoccurIfthemodesarestronglycoupledtheresonantpeaksmaycombine(seeX1/F2inthepreviousslide)andbehardtonoticeSpecialcases:33Example:Illustratingtheeffectoftheinputforceallocation34Calculatingthenaturalfrequenciesandmodeshapesyields:Themassnormalizedeigenvectorsare:35Transformandcomputethemodalequations:36Homework:37LagrangeEquation38TypicalVibrationAnalysisSteps39TypicalVibrationAnalysisSteps40D’AlembertPrinciple41D’AlembertPrincipleApplyNewton’slawtoeachmassVirtualwork42D’AlembertPrincipleVirtualworkdonebynetforcethroughanadmissibleinfinitesimalvirtualdisplacementiszero.GeneralizedcoordinatesIndependentAdmissiblemotionCompletelyfixeverypartsEqualstonumberofDOF43Hamilton’sPrincipleConsider44Hamilton’sPrincipleConsider2ndterm45Hamilton’sPrincip
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 传递娱乐经纪合同范本
- 2025年中国艾艾贴未来发展预测及投资方向研究报告
- 2025年度工业用不锈钢管材购销及仓储服务合同
- 2025年度新能源汽车充电桩安装与维护合同变更声明范本
- 2025年度兼职岗位需求分析与外包服务合同
- 中国跌打损伤外用药市场竞争态势及投资规划建议报告
- 2025年度光伏电站土石方运输与光伏组件安装承包服务合同
- 2025年异型孔板项目投资可行性研究分析报告
- 2025年度建筑工程土方工程合同(绿色施工技术)
- 全运会申请书
- 二零二五年度集团公司内部项目专项借款合同范本3篇
- 低空飞行旅游观光项目可行性实施报告
- 2024年版:煤矿用压力罐设计与安装合同
- 2024年贵州云岩区总工会招聘工会社会工作者笔试真题
- 《算法定价垄断属性问题研究的国内外文献综述》4200字
- 2024年04月浙江义乌农商银行春季招考笔试历年参考题库附带答案详解
- 涉密计算机保密培训
- 挂靠免责协议书范本
- 2024年浙江省五校联盟高考地理联考试卷(3月份)
- 在线心理健康咨询行业现状分析及未来三至五年行业发展报告
- 电动三轮车购销合同
评论
0/150
提交评论