版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
...wd......wd......wd...高考二轮小专题:圆锥曲线题型归纳根基知识:1.直线与圆的方程;2.椭圆、双曲线、抛物线的定义与标准方程公式;3.椭圆、双曲线、抛物线的几何性质等相关知识:、、、、、渐近线。基本方法:待定系数法:求所设直线方程中的系数,求标准方程中的待定系数、、、、等等;齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根;点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式;距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题;基本思想:1.“常规求值〞问题需要找等式,“求范围〞问题需要找不等式;2.“是否存在〞问题当作存在去求,假设不存在那么计算时自然会无解;3.证明“过定点〞或“定值〞,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关;4.证明不等式,或者求最值时,假设不能用几何观察法,那么必须用函数思想将对象表示为变量的函数,再解决;5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化〞的经历;6.大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。一、求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题7.【2015高考重庆,理10】设双曲线〔a>0,b>0〕的右焦点为1,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.假设D到直线BC的距离小于,那么该双曲线的渐近线斜率的取值范围是〔〕A、B、C、D、【答案】A【考点定位】双曲线的性质.【名师点晴】求双曲线的渐近线的斜率取舍范围的基本思想是建设关于的不等式,根据条件和双曲线中的关系,要据题中提供的条件列出所求双曲线中关于的不等关系,解不等式可得所求范围.解题中要注意椭圆与双曲线中关系的不同.10.【2015高考浙江,理5】如图,设抛物线的焦点为,不经过焦点的直线上有三个不同的点,,,其中点,在抛物线上,点在轴上,那么与的面积之比是〔〕A.B.C.D.【答案】A.【考点定位】抛物线的标准方程及其性质【名师点睛】此题主要考察了抛物线的标准方程及其性质,属于中档题,解题时,需结合平面几何中同高的三角形面积比等于底边比这一性质,结合抛物线的性质:抛物线上的点到准线的距离等于其到焦点的距离求解,在平面几何背景下考察圆锥曲线的标准方程及其性质,是高考中小题的热点,在复习时不能遗漏相应平面几何知识的复习.12.【2015高考北京,理10】双曲线的一条渐近线为,那么.【答案】【解析】双曲线的渐近线方程为,,,那么【考点定位】此题考点为双曲线的几何性质,正确利用双曲线的标准方程,求出渐近线方程,利用已给渐近线方程求参数.【名师点睛】此题考察双曲线的几何性质,重点考察双曲线的渐近线方程,此题属于根基题,正确利用双曲线的标准方程,求出渐近线方程,求渐近线方程的简单方法就是把标准方程中的“1〞改“0〞,利用渐近线方程,求出参数的值.11.【2015高考新课标2,理11】A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,那么E的离心率为〔〕A.B.C.D.【答案】D【解析】设双曲线方程为,如以下列图,,,过点作轴,垂足为,在中,,,故点的坐标为,代入双曲线方程得,即,所以,应选D.【考点定位】双曲线的标准方程和简单几何性质.【名师点睛】此题考察双曲线的标准方程和简单几何性质、解直角三角形知识,正确表示点的坐标,利用“点在双曲线上〞列方程是解题关键,属于中档题.18.【2015高考新课标2,理20】〔此题总分值12分〕椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;〔Ⅱ〕假设过点,延长线段与交于点,四边形能否为平行四边形假设能,求此时的斜率,假设不能,说明理由.【答案】(Ⅰ)详见解析;〔Ⅱ〕能,或.【解析】(Ⅰ)设直线,,,.将代入得,故,.解得,.因为,,,所以当的斜率为或时,四边形为平行四边形.【考点定位】1、弦的中点问题;2、直线和椭圆的位置关系.【名师点睛】(Ⅰ)题中涉及弦的中点坐标问题,故可以采取“点差法〞或“韦达定理〞两种方法求解:设端点的坐标,代入椭圆方程并作差,出现弦的中点和直线的斜率;设直线的方程同时和椭圆方程联立,利用韦达定理求弦的中点,并寻找两条直线斜率关系;〔Ⅱ〕根据(Ⅰ)中结论,设直线方程并与椭圆方程联立,求得坐标,利用以及直线过点列方程求的值.23,【2015高考安徽,理20】设椭圆E的方程为,点O为坐标原点,点A的坐标为,点B的坐标为,点M在线段AB上,满足,直线OM的斜率为.〔I〕求E的离心率e;〔=2\*ROMANII〕设点C的坐标为,N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【答案】〔I〕;〔=2\*ROMANII〕.【考点定位】1.椭圆的离心率;2.椭圆的标准方程;3.点点关于直线对称的应用.【名师点睛】椭圆一直是解答题中考察解析几何知识的重要载体,不管对其如何进展改编与设计,抓住根基知识、考基本技能是不变的话题.解析几何主要研究两类问题:一是根据条件确定曲线方程,二是利用曲线方程研究曲线的几何性质.曲线方程确实定可分为两类:假设曲线类型,那么采用待定系数法;假设曲线类型未知时,那么可利用直接法、定义法、相关点法等求解.此题是第一种类型,要利用给定28.【2015高考陕西,理20】〔本小题总分值12分〕椭圆〔〕的半焦距为,原点到经过两点,的直线的距离为.〔I〕求椭圆的离心率;〔II〕如图,是圆的一条直径,假设椭圆经过,两点,求椭圆的方程.【答案】〔I〕;〔II〕.【解析】试题分析:〔I〕先写过点,的直线方程,再计算原点到该直线的距离,进而可得椭圆的离心率;〔II〕先由〔I〕知椭圆的方程,设的方程,联立,消去,可得和的值,进而可得,再利用可得的值,进而可得椭圆的方程.试题解析:〔I〕过点,的直线方程为,学优高考网那么原点到直线的距离,由,得,解得离心率.(II)解法一:由〔I〕知,椭圆的方程为.(1)依题意,圆心是线段的中点,且.易知,不与轴垂直,设其直线方程为,代入(1)得设那么由,得解得.从而.于是.由,得,解得.故椭圆的方程为.解法二:由〔I〕知,椭圆的方程为.(2)考点:1、直线方程;2、点到直线的距离公式;3、椭圆的简单几何性质;4、椭圆的方程;5、圆的方程;6、直线与圆的位置关系;7、直线与圆锥曲线的位置.【名师点晴】此题主要考察的是直线方程、点到直线的距离公式、椭圆的简单几何性质、椭圆的方程、圆的方程、直线与圆的位置关系和直线与圆锥曲线的位置,属于难题.解题时一定要注意考虑直线的斜率是否存在,否那么很容易失分.解此题需要掌握的知识点是截距式方程,点到直线的距离公式和椭圆的离心率,即截距式方程〔在轴上的截距,在轴上的截距〕,点到直线的距离,椭圆〔〕的离心率.25.【2015高考重庆,理21】如题〔21〕图,椭圆的左、右焦点分别为过的直线交椭圆于两点,且〔1〕假设,求椭圆的标准方程〔2〕假设求椭圆的离心率【答案】〔1〕;〔2〕【解析】试题解析:〔1〕此题中椭圆上的一点到两焦点的距离,因此由椭圆定义可得长轴长,即参数的值,而由,应用勾股定理可得焦距,即的值,因此方程易得;〔2〕要求椭圆的离心率,就是要找到关于的一个等式,题中涉及到焦点距离,因此我们仍然应用椭圆定义,设,那么,,于是有,这样在中求得,在中可建设关于的等式,从而求得离心率.(1)由椭圆的定义,学优高考网设椭圆的半焦距为c,由,因此即从而故所求椭圆的标准方程为.(2)解法一:如图(21)图,设点P在椭圆上,且,那么求得由,得,从而由椭圆的定义,,从而由,有又由,知,因此于是解得.【考点定位】考察椭圆的标准方程,椭圆的几何性质.,直线和椭圆相交问题,考察运算求解能力.【名师点晴】确定圆锥曲线方程的最基本方法就是根据条件得到圆锥曲线系数的方程,解方程组得到系数值.注意在椭圆中c2=a2-b2,在双曲线中c2=a2+b2.圆锥曲线基本问题的考察的另一个重点是定义的应用;求椭圆与双曲线的离心率的基本思想是建设关于a,b,c的方程,根据条件和椭圆、双曲线中a,b,c的关系,求出所求的椭圆、双曲线中a,c之间的比例关系,根据离心率定义求解.如果是求解离心率的范围,那么需要建设关于a,c的不等式.【2015高考湖南,理13】设是双曲线:的一个焦点,假设上存在点,使线段的中点恰为其虚轴的一个端点,那么的离心率为.【答案】.【考点定位】双曲线的标准方程及其性质.【名师点睛】此题主要考察了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进展等价的转化是解题的关键,在求解双曲线的方程时,主要利用,焦点坐标,渐近线方程等性质,也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来.【2015高考上海,理9】点和的横坐标一样,的纵坐标是的纵坐标的倍,和的轨迹分别为双曲线和.假设的渐近线方程为,那么的渐近线方程为.【答案】【考点定位】双曲线渐近线【名师点睛】(1)渐近线方程y=mx,假设焦点位置不明确要分或讨论.(2)与双曲线共渐近线的可设为;(3)假设渐近线方程为,那么可设为;(4)相关点法求动点轨迹方程.16.【2015高考山东,理15】平面直角坐标系中,双曲线的渐近线与抛物线交于点,假设的垂心为的焦点,那么的离心率为.【答案】【解析】设所在的直线方程为,那么所在的直线方程为,解方程组得:,所以点的坐标为,抛物线的焦点的坐标为:.因为是的垂心,所以,所以,.所以,.【考点定位】1、双曲线的标准方程与几何性质;2、抛物线的标准方程与几何性质. 【名师点睛】此题考察了双曲线与抛物线的标准方程与几何性质,意在考察学生对圆锥曲线基本问题的把握以及分析问题解决问题的能力以及基本的运算求解能力,三角形的垂心的概念以及两直线垂直的条件是突破此题的关键.点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。二、“是否存在〞问题29.【2015高考新课标1,理20】在直角坐标系中,曲线C:y=与直线(>0)交与M,N两点,〔Ⅰ〕当k=0时,分别求C在点M和N处的切线方程;〔Ⅱ〕y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN说明理由.【答案】〔Ⅰ〕或〔Ⅱ〕存在【解析】试题分析:〔Ⅰ〕先求出M,N的坐标,再利用导数求出M,N.〔Ⅱ〕先作出判定,再利用设而不求思想即将代入曲线C的方程整理成关于的一元二次方程,设出M,N的坐标和P点坐标,利用设而不求思想,将直线PM,PN的斜率之和用表示出来,利用直线PM,PN的斜率为0,即可求出关系,从而找出适合条件的P点坐标.试题解析:〔Ⅰ〕由题设可得,,或,.∵,故在=处的到数值为,C在处的切线方程为学优高考网,即.故在=-处的到数值为-,C在处的切线方程为,即.故所求切线方程为或.……5分〔Ⅱ〕存在符合题意的点,证明如下:设P〔0,b〕为复合题意得点,,,直线PM,PN的斜率分别为.将代入C得方程整理得.∴.∴==.当时,有=0,那么直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以符合题意.……12分【考点定位】抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力【名师点睛】对直线与圆锥曲线的位置关系问题,常用设而不求思想,即设出直线方程代入圆锥曲线方程化为关于的一元二次方程,设出交点坐标,利用根与系数关系,将交点的横坐标之和与积一元二次方程的系数表示出来,然后根据题中的条件和所求结论,选择适宜的方法进展计算,注意题中条件的合理转化,如此题中,将角∠OPM=∠OPN一样转化为直线PM的倾斜角与直线PN的倾斜角互补,进而转化为直线PM的斜率与直线PN的斜率之和为0,再将其坐标化,即可列出方程,解析几何题思路固定,字母运算复杂,需要细心和耐心.30.【2015高考北京,理19】椭圆:的离心率为,点和点都在椭圆上,直线交轴于点.〔Ⅰ〕求椭圆的方程,并求点的坐标〔用,表示〕;〔Ⅱ〕设为原点,点与点关于轴对称,直线交轴于点.问:轴上是否存在点,使得假设存在,求点的坐标;假设不存在,说明理由.【答案】(1),,(2)存在点考点:1.求椭圆方程;2.求直线方程及与坐标轴的交点;3.存在性问题.【名师点睛】此题考察直线和椭圆的有关知识及解存在性命题的方法,此题属于中偏难问题,思维量和运算量均有,利用待定系数法求出椭圆方程,利用直线方程的斜截式写出直线方程,求出点M、N的坐标,利用直角三角形内锐角三角函数正切定义求出,根据二者相等,解出Q点坐标,说明存在点符合条件的点Q.三、过定点、定值问题26.【2015高考四川,理20】如图,椭圆E:的离心率是,过点P〔0,1〕的动直线与椭圆相交于A,B两点,当直线平行与轴时,直线被椭圆E截得的线段长为.(1)求椭圆E的方程;〔2〕在平面直角坐标系中,是否存在与点P不同的定点Q,使得恒成立假设存在,求出点Q的坐标;假设不存在,请说明理由.【答案】〔1〕;〔2〕存在,Q点的坐标为.【解析】〔1〕由,点在椭圆E上.因此,解得.所以椭圆的方程为.学优高考网〔2〕当直线与轴平行时,设直线与椭圆相交于C、D两点.如果存在定点Q满足条件,那么,即.所以Q点在y轴上,可设Q点的坐标为.当直线与轴垂直时,设直线与椭圆相交于M、N两点.那么,由,有,解得或.所以,假设存在不同于点P的定点Q满足条件,那么Q点的坐标只可能为.下面证明:对任意的直线,均有.当直线的斜率不存在时,由上可知,结论成立.当直线的斜率存在时,可设直线的方程为,A、B的坐标分别为.联立得.其判别式,所以,.因此.易知,点B关于y轴对称的点的坐标为.【考点定位】此题考察椭圆的标准方程与几何性质、直线方程、直线与椭圆的位置关系等根基知识,考察推理论证能力、运算求解能力,考察数形结合、化归与转化、特殊与一般、分类与整合等数学思想.【名师点睛】高考中解几题一般都属于难题的范畴,考生应立足于拿稳第〔1〕题的分和第〔2〕小题的步骤分.解决直线与圆锥曲线相交的问题,一般是将直线方程与圆锥曲线的方程联立,再根据根与系数的关系解答.此题是一个探索性问题,对这类问题一般是根据特殊情况找出结果,然后再证明其普遍性.解决此题的关键是通过作B的对称点将问题转化.【2015高考湖南,理20】抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.〔1〕求的方程;〔2〕过点的直线与相交于,两点,与相交于,两点,且与同向〔ⅰ〕假设,求直线的斜率〔ⅱ〕设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形【答案】〔1〕;〔2〕〔i〕,〔ii〕详见解析.【解析】试题分析:〔1〕根据条件可求得的焦点坐标为,再利用公共弦长为即可求解;〔2〕〔i〕设直线的斜率为,那么的方程为,由得,根据条件可知,从而可以建设关于的方程,即可求解;〔ii〕根据条件可说明,因此是锐角,从而是钝角,即可得证试题解析:〔1〕由:知其焦点的坐标为,∵也是椭圆的一焦点,∴①,又与的公共弦的长为,与都关于轴对称,且的方程为,由此易知与的公共点的坐标为,∴②,联立①,②,得,,故的方程为;〔2〕如图,,,,,〔i〕∵与同向,且,∴,从而,即,于是③,设直线的斜率为,那么的方程为,由得,而,是这个方程的两根,∴,④,由得【考点定位】1.椭圆的标准方程及其性质;2.直线与椭圆位置关系.【名师点睛】此题主要考察了椭圆的标准方程及其性质以及直线与椭圆的位置关系,属于较难题,解决此类问题的关键:〔1〕结合椭圆的几何性质,如焦点坐标,对称轴,等;〔2〕当看到题目中出现直线与圆锥曲线时,不需要特殊技巧,只要联立直线与圆锥曲线的方程,借助根与系数关系,找准题设条件中突显的或隐含的等量关系,把这种关系“翻译〞出来,有时不一定要把结果及时求出来,可能需要整体代换到后面的计算中去,从而减少计算量.【2015高考上海,理21】椭圆,过原点的两条直线和分别于椭圆交于、和、,记得到的平行四边形的面积为.〔1〕设,,用、的坐标表示点到直线的距离,并证明;〔2〕设与的斜率之积为,求面积的值.【答案】〔1〕详见解析〔2〕【解析】证明:〔1〕直线,点到的距离.,所以.解:〔2〕设,那么.设,.由,得.同理.由,,整理得.【考点定位】直线与椭圆位置关系【名师点睛】解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建设方程,解决相关问题.涉及弦长问题利用弦长公式解决,往往会更简单.三角形面积公式的选用也是解题关键.点评:证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明。最值问题17.【2015江苏高考,12】在平面直角坐标系中,为双曲线右支上的一个动点。假设点到直线的距离大于c恒成立,那么是实数c的最大值为.【答案】【解析】设,因为直线平行于渐近线,所以点到直线的距离恒大于直线与渐近线之间距离,因此c的最大值为直线与渐近线之间距离,为【考点定位】双曲线渐近线,恒成立转化【名师点晴】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线共渐近线的可设为;(2)假设渐近线方程为,那么可设为;(3)双曲线的焦点到渐近线的距离等于虚半轴长;(4)的一条渐近线的斜率为.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.22.【2015高考山东,理20】平面直角坐标系中,椭圆的离心率为,左、右焦点分别是,以QUOTEQUOTE为圆心以3为半径的圆与以QUOTE为圆心以1为半径的圆相交,且交点在椭圆上.(Ⅰ)求椭圆的方程;〔Ⅱ〕设椭圆,QUOTE为椭圆QUOTE上任意一点,过点的直线交椭圆于两点,射线QUOTE交椭圆于点.(i)求QUOTE的值;〔ii〕求面积的最大值.【答案】〔I〕;〔II〕(i)2;〔ii〕.试题解析:〔I〕由题意知,那么,又可得,所以椭圆C的标准方程为.〔II〕由〔I〕知椭圆E的方程为,〔i〕设,,由题意知因为,又,即,所以,即.〔ii〕设将代入椭圆E的方程,可得由,可得…………①那么有所以因为直线与轴交点的坐标为所以的面积令,将代入椭圆C的方程可得由,可得…………②由①②可知因此,故当且仅当,即时取得最大值由〔i〕知,面积为,所以面积的最大值为.【考点定位】1、椭圆的标准方程与几何性质;2、直线与椭圆位置关系综合问题;3、函数的最值问题.【名师点睛】此题考察了椭圆的概念标准方程与几何性质以及直线与椭圆的位置关系,意在考察学生理解力、分析判断能力以及综合利用所学知识解决问题能力和较强的运算求解能力,在得到三角形的面积的表达式后,能否利用换元的方法,观察出其中的函数背景成了完全解决问题的关键.27.【2015高考湖北,理21】一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB滑动,且,.当栓子在滑槽AB内作往复运动时,带动绕转动一周〔不动时,也不动〕,处的笔尖画出的曲线记为.以为原点,所在的直线为轴建设如图2所示的平面直角坐标系.〔Ⅰ〕求曲线C的方程;〔Ⅱ〕设动直线与两定直线和分别交于两点.假设直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值假设存在,求出该最小值;假设不存在,说明理由.xDxDOMNy第21第21题图2第21题图1【答案】〔Ⅰ〕;〔Ⅱ〕存在最小值8.【解析】〔Ⅰ〕设点,,依题意,第21题解答图学优高考网第21题解答图,且,所以,且即且由于当点不动时,点也不动,所以不恒等于0,于是,故,代入,可得,即所求的曲线的方程为〔Ⅱ〕〔1〕当直线的斜率不存在时,直线为或,都有.〔2〕当直线的斜率存在时,设直线,由消去,可得.因为直线总与椭圆有且只有一个公共点,所以,即.①又由可得;同理可得.由原点到直线的距离为和,可得考点:椭圆的标准方程、几何性质,直线与圆、椭圆的位置关系,最值.【名师点睛】此题以滑槽,长短杆为背景,乍一看与我们往年考的很不一样,但是只要学生仔细读题均能找到椭圆的,,.那么第一问就迎刃而解了,第二问仍然为圆锥曲线的综合问题。直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考察,一直是高考考察的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考察数学思想方法的热点题型.解题过程中要注意讨论直线斜率的存在情况,计算要准确.21.【2015高考浙江,理19】椭圆上两个不同的点,关于直线对称.〔1〕求实数的取值范围;〔2〕求面积的最大值〔为坐标原点〕.【答案】〔1〕或;〔2〕.试题分析:〔1〕可设直线AB的方程为,从而可知有两个不同的解,再由中点也在直线上,即可得到关于的不等式,从而求解;〔2〕令,可将表示为的函数,从而将问题等价转化为在给定范围上求函数的最值,从而求解.试题解析:〔1〕由题意知,可设直线AB的方程为,由,学优高考网消去,得,∵直线与椭圆有两个不同的交点,∴,①,将AB中点代入直线方程解得,②。由①②得或;〔2〕令,那么,且O到直线AB的距离为,设的面积为,∴,当且仅当时,等号成立,故面积的最大值为.【考点定位】1.直线与椭圆的位置关系;2.点到直线距离公式;3.求函数的最值.【名师点睛】此题主要考察了直线与椭圆的位置关系等知识点,在直线与椭圆相交背景下求三角形面积的最值,浙江理科数学试卷在2012年与2013年均有考察,可以看出是热点问题,将直线方程与椭圆方程联立消去一个字母后利用韦达定理以及点到直线距离公式建设目标函数,将面积问题转化为求函数最值问题,是常规问题的常规考法,应熟练掌握,同时,需提高字母运算的技巧.点评:最值问题的方法:几何法、配方法〔转化为二次函数的最值〕、三角代换法〔转化为三角函数的最值〕、利用切线的方法、利用均值不等式的方法等。五、求参数范围问题。常用思路:寻找不等式。将各限制条件都列出,再求交集。不要遗漏限制条件。常用建设不等式的途径:直线与曲线有交点时判别式大于等于零;圆锥曲线中变量X、Y的取值范围;点与曲线的位置关系,如弦的中点在曲线内部;题设中有的范围;正弦函数、余弦函数的有界性;均值不等式;焦半径的取值范围;函数的值域;三角形图形中两边之和大于第三边。4.【2015高考新课标1,理5】M〔〕是双曲线C:上的一点,是C上的两个焦点,假设,那么的取值范围是()〔A〕〔-,〕 〔B〕〔-,〕〔C〕〔,〕〔D〕〔,〕【答案】A5.【2015高考湖北,理8】将离心率为的双曲线的实半轴长和虚半轴长同时增加个单位长度,得到离心率为的双曲线,那么〔〕A.对任意的, B.当时,;当时,C.对任意的, D.当时,;当时,【答案】D【解析】依题意,,,因为,由于,,,所以当时,,,,,所以;当时,,,而,所以,所以.所以当时,;当时,.【考点定位】双曲线的性质,离心率.【名师点睛】分类讨论思想是一种重要的数学思想方法.分类讨论的时应做到:分类不重不漏;标准要统一,层次要清楚;能不分类的要尽量防止或尽量推迟,决不无原那么地讨论.6.【2015高考四川,理10】设直线l与抛物线相交于A,B两点,与圆相切于点M,且M为线段AB的中点.假设这样的直线l恰有4条,那么r的取值范围是〔〕〔A〕〔B〕〔C〕〔D〕【答案】D【解析】显然当直线的斜率不存在时,必有两条直线满足题设.当直线的斜率存在时,设斜率为.设,那么,相减得.由于,所以,即.圆心为,由得,所以,即点M必在直线上.将代入得.因为点M在圆上,所以.又〔由于斜率不存在,故,所以不取等号〕,所以.选D.【考点定位】直线与圆锥曲线,不等式.【名师点睛】首先应结合图形进展分析.结合图形易知,只要圆的半径小于5,那么必有两条直线〔即与x轴垂直的两条切线〕满足题设,因此只需直线的斜率存在时,再有两条直线满足题设即可.接下来要解决的问题是当直线的斜率存在时,圆的半径的范围是什么.涉及直线与圆锥曲线的交点及弦的中点的问题,常常采用“点差法〞.在此题中利用点差法可得,中点必在直线上,由此可确定中点的纵坐标的范围,利用这个范围即可得到r的取值范围.【考点定位】双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.【名师点睛】此题考察利用向量数量积的坐标形式将表示为关于点M坐标的函数,利用点M在双曲线上,消去x0,根据题意化为关于的不等式,即可解出的范围,是根基题,将表示为的函数是解此题的关键.24.【2015高考天津,理19】〔本小题总分值14分〕椭圆的左焦点为,离心率为,点M在椭圆上且位于第一象限,直线被圆截得的线段的长为c,.(I)求直线的斜率;(II)求椭圆的方程;(III)设动点在椭圆上,假设直线的斜率大于,求直线〔为原点〕的斜率的取值范围.【答案】(I);(II);(=3\*ROMANIII).【解析】(I)由有,又由,可得,,设直线的斜率为,那么直线的方程为,由有,解得.(II)由(I)得椭圆方程为,直线的方程为,两个方程联立,消去,整理得,解得或,因为点在第一象限,可得的坐标为,由,解得,所以椭圆方程为(=3\*ROMANIII)设点的坐标为,直线的斜率为,得,即,与椭圆方程联立,消去,整理得,又由,得,解得或,设直线的斜率为,得,即,与椭圆方程联立,整理可得.=1\*GB3①当时,有,因此,于是,得=2\*GB3②当时,有,因此,于是,得综上,直线的斜率的取值范围是【考点定位】1.椭圆的标准方程和几何性质;2.直线和圆的位置关系;3.一元二次不等式.【名师点睛】此题主要考察椭圆的定义、标准方程及几何性质,直线与圆锥曲线的位置关系.由勾股定理求圆的弦长,表达数学数形结合的重要数学思想;用数字来刻画几何图形的特征,是解析几何的精华,联立方程组,求出椭圆中参数的关系,进一步得到椭圆方程;构造函数求斜率取值范围,表达函数在解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国机械仪表数据监测研究报告
- 2024至2030年中国彩显FBT高压包行业投资前景及策略咨询研究报告
- 2024至2030年中国圆形低音炮数据监测研究报告
- 医疗美容专业解读
- 水利项目特许协议合同范例
- 铁路建设场地平整工程合同
- 洗涤设备租赁合同样本
- 打捆合同模板
- 学校操场租赁合同范例
- 音乐厅租赁经营合同
- 光刻工艺问答
- 航道工程学 第3章 航道整治工程 (2)
- wincc全套脚本总结
- 欧洲3000年历史地图演变【第二部分】
- 中小学校长信息化领导力标准(试行)
- 管道口径、流速、压力、流量之间的计算公式
- 国际航运市场(FFA)
- 空竹活动总结
- (完整版)银行账户共管协议最新(精华版)
- 实验五鱼体测量及描述
- 金属线材反复弯曲试验记录
评论
0/150
提交评论