版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习目标:1、了解三角形的内切圆、三角形的内心、圆的外切三角形的概念。2、会利用基本作图作三角形的内切圆。3、了解三角形内心的性质,并会进行有关的计算。1.任意作一个∠ABC,如果在∠ABC内作圆,使其与两边OA、OB相切,满足上述条件的圆是否可以作出?如果可以作,能作多少个?所作出的圆的圆心O的位置有什么特征?为什么?圆心O在∠ABC的平分线上。能作无数个2.任意作一个△ABC,在△ABC内作圆,使其与各边都相切,满足上述条件的圆是否可以作出?如果可以作,能作多少个?所作出的圆的圆心O的位置有什么特征?为什么?圆心O在∠ABC与∠ACB的两个角的角平分线的交点上。O图2AB
C作出三个内角的平分线,三条内角平分线相交于一点,这点就是圆心,
过圆心作一边的垂线,垂线段的长就是半径。
OCABD3.如何确定与三角形三边都相切的圆的圆心位置与半径的长?三角形与圆的位置关系与三角形各边都相切的圆叫做三角形的内切圆.这个三角形叫做圆的外切三角形.内切圆的圆心叫做三角形的内心.三角形的内心是三角形三条角平分线的交点。老师提示:
三角形的边与圆的位置关系称为切.ABC●IABC下列各图,是三角形的内切圆的是()名称图形确定方法性质外心:三角形外接圆的圆心三角形三边垂直平分线的交点1.OA=OB=OC2.外心不一定在三角形的外部.内心:三角形内切圆的圆心三角形三条角平分线的交点1.到三边的距离相等;2.OA、OB、OC分别平分∠BAC、∠ABC、∠ACB3.内心在三角形内部.1.已知△ABC的三边长分别为a,b,c,它的内切圆半径为r,你会求△ABC的面积吗?2.已知Rt△ABC的两直角边分别为a,b,你会求它的内切圆半径吗?ABCO●┓●CAB┐●┓┓=++.ABCabcrr=a+b-c2rO已知:如图,在Rt△ABC中,∠C=90°,边BC、AC、AB的长分别为a、b、c,求其内切圆O的半径长.EDrra-ra-rb-r+a-r=cb-rFb-r
1.本节课从实际问题入手,探索得出三角形内切圆的作法.
2.通过类比三角形的外接圆与圆的内接三角形概念得出三角形的内切圆、圆的外切三角形概念.3.学习时要明确“接”和“切”的含义、弄
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度防火门窗生产工艺改进合同
- 2024年度抖音直播电商营销合作合同
- 2024年度租赁期满后房屋购买的合同条款
- 2024年度北京个人汽车租赁合同法律效力
- 2024版知识产权专利申请代理合同
- 学习策略指导课程安排计划
- 高效灌溉技术的推广应用计划
- 财务风险管理的有效方法计划
- 2024年度旅游行业宣传传单制作与派发协议
- 临边和洞口的安全防护措施方案
- 中国数据中心产业发展白皮书(2023年)
- 剪刀式车升降机施工方案
- 口腔诊所患者投诉制度范本
- 国家开放大学电大专科《刑法学(1)》案例分析题题库及答案
- Invoice商业发票模板
- 国家开放大学中国近代史纲要社会实践报告(通用20篇)
- 工艺、设备设施交付检维修手续
- 中药房用中药饮片用户需求书
- 妊娠期高血压疾病诊治指南2020完整版
- 成人高脂血症食养指南(2023年版)解读课件PPT
- 跨境电商物流与供应链管理PPT全套完整教学课件
评论
0/150
提交评论