版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.1全等三角形问题1观察这些图片,你能看出形状、大小完全一样的几何图形吗?生活中的全等形
追问你能再举出生活中的一些类似例子吗?生活中的全等形
问题2
请同学们思考用复写纸画出两个三角形,并用剪刀剪下其中一个三角形,猜想这两个三角形有何关系?
全等形的定义:能够完全重合的两个图形叫做全等形.
全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.全等形、全等三角形及其有关概念
问题3
请同学用语言归纳出问题1和问题2中两个图形有何关系?
点A与点D、点B与点E、点C与点F重合,称为对应顶点;边AB与DE、边BC与EF、边AC与DF重合,称为对应边;∠A与∠D、∠B与∠E、∠C与∠F重合,称为对应角.全等形、全等三角形及其有关概念
追问1请同学们将问题2中的两个三角形分别标为△ABC、△DEF,观察这两个三角形有何对应关系?ABCDEF
△ABC与△DEF是全等的,记作:“△ABC≌△DEF”,读作:“△ABC全等于△DEF”.
全等形、全等三角形及其有关概念
追问2你能用符号表示出这两个全等三角形吗?ABCDEF
图(1)中,△ABC≌△DEF;图(2)中,△ABC≌△DBC;图(3)中,△ABC≌△AED.全等形、全等三角形及其有关概念
问题4请同学们按照教材第32页图12.1-2进行平移、翻折、旋转,变换前后的两个三角形还全等吗?
追问你能说出它们的对应顶点、对应边和对应角吗?
全等三角形的性质:全等三角形的对应边相等、对应角相等.全等三角形的性质
问题5全等三角形的对应边和对应角有何大小关系?ABCDEF
用几何语言表述:∵△ABC≌△DEF,
∴AB=DE,BC=EF,AC=DF(全等三角形的对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应角相等).全等三角形的性质
问题5全等三角形的对应边和对应角有何大小关系?ABCDEF
例已知:如图,△ABC≌△DEF.(1)若DF=10cm,则AC的长为
;(2)若∠A=100°,则:∠D的度数为
;10cm100°全等三角形的性质的运用ABCDEF解:∵∠A=100°,∠B=30°,∴∠C=180°-∠A-∠B
=50°.∵△DEF
≌△ABC,
∴∠F
=∠C
=50°
(全等三角形的对应角相等).全等三角形的性质的运用
例已知:如图,△ABC≌△DEF.(3)若∠A=100°,∠B=30°,求∠F的度数.ABCDEFD课堂练习练习1如图,△OCA≌△OBD,点C和点B,点A与点D是对应点,则下列结论错误的是().(A)∠COA=∠BOD;(B)∠A=∠D;(C)CA=BD;(D)
OB=OA.CBOAD
练习2
△ABN
≌△ACM,∠ABN
和∠ACM
是对
应角,AB
和AC
是对应边.则下列结论错误的是().(A)∠AMC=∠ANB
;(B)∠BAN=∠CAM
;(C)BM=MN;(D)AM=AN.C课堂练习ABCMN
练习3
如图,△ABC≌△CDA,AB与CD,BC与DA是对应边,则下列结论错误的是().
(A)∠
BAC
=∠
DCA
;(B)AB//DC;(C)∠BCA=∠DCA;(D)BC//DA.CABCD课堂练习
练习4
如图,△EFG≌△NMH,∠F和∠M是对应角.(1)FG与MH平行吗?为什么?(2)判断线段EH与NG的大小关系,并说明理由.(1)平行;(2)相等.HE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度无线电频率占用费支付合同3篇
- 2024年员工与企业共同创业股权入股协议3篇
- 2024年度五金建材行业销售代理合作协议3篇
- 2024年幼儿园园长任期教育质量提升聘用合同范本3篇
- 2024年度金融服务代理居间合作协议3篇
- 2024年无保险劳务派遣服务外包与合作协议3篇
- 2024年度环保产业知识产权保护及合作协议范本3篇
- 2024年度风景名胜区栽树保护承包合同3篇
- 2024学校图书馆数字资源与纸质图书采购一体化合同3篇
- 2024年度个人与个人之间互助借款合同3篇
- 酒水服务与品鉴智慧树知到期末考试答案2024年
- 2024法务部门合规风险管理实践模板
- 大学生国家安全教育智慧树知到期末考试答案2024年
- 商场保洁服务日常巡检方案
- 中医培训课件:《艾灸技术》
- 国家开放大学《理工英语4》综合练习参考答案
- 河北省保定市2023-2024学年高二上学期期末调研数学试题(含答案解析)
- LS/T 1234-2023植物油储存品质判定规则
- 2016-2023年江苏医药职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 提醒关电关水关门注意安全的公告
- 箱变检测报告
评论
0/150
提交评论