版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为()A. B. C. D.2.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣ B. C.﹣5 D.53.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉(
)A.6.5千克B.7.5千克C.8.5千克D.9.5千克4.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)5.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m6.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A. B. C. D.7.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5708.等式组的解集在下列数轴上表示正确的是(
).A.
B.C.
D.9.函数(为常数)的图像上有三点,,,则函数值的大小关系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y110.已知,则的值为A. B. C. D.11.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A. B. C. D.12.|﹣3|=()A. B.﹣ C.3 D.﹣3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.抛物线y=2x2+4向左平移2个单位长度,得到新抛物线的表达式为_____.14.已知是整数,则正整数n的最小值为___15.如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:①;②;③;④不等式的解集是或.其中正确结论的序号是__________.16.在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=﹣x﹣2上有一动线段AB,当P点坐标为_____时,△PAB的面积最小.17.如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=_____.18.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?20.(6分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.(1)求⊙O的半径长;(2)求线段DG的长.21.(6分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.
请你根据图中信息解答下列问题:
(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_____°;
(2)补全条形统计图;
(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.22.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。23.(8分)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=,求线段CD的长.24.(10分)先化简,再求值:,其中.25.(10分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.26.(12分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.27.(12分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【详解】解:由旋转可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴阴影部分的面积=2×2÷2−=2−.故选:B.【点睛】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算.2、D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(﹣2)•===a-b,当a-b=5时,原式=5,故选D.3、C【解析】【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C.【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.4、B【解析】连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移2.∵3=336×6+1,∴点B1向右平移1322(即336×2)到点B3.∵B1的坐标为(1.5,),∴B3的坐标为(1.5+1322,),故选B.点睛:本题是规律题,能正确地寻找规律“每翻转6次,图形向右平移2”是解题的关键.5、B【解析】
根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故选B.6、B【解析】试题解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.7、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.8、B【解析】【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.【详解】,解不等式①得,x>-3,解不等式②得,x≤2,在数轴上表示①、②的解集如图所示,故选B.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9、A【解析】试题解析:∵函数y=(a为常数)中,-a1-1<0,∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故选A.10、C【解析】由题意得,4−x⩾0,x−4⩾0,解得x=4,则y=3,则=,故选:C.11、D【解析】
先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【点睛】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.12、C【解析】
根据绝对值的定义解答即可.【详解】|-3|=3故选:C【点睛】本题考查的是绝对值,理解绝对值的定义是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、y=2(x+2)2+1【解析】试题解析:∵二次函数解析式为y=2x2+1,∴顶点坐标(0,1)向左平移2个单位得到的点是(-2,1),可设新函数的解析式为y=2(x-h)2+k,代入顶点坐标得y=2(x+2)2+1,故答案为y=2(x+2)2+1.点睛:函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.14、1【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.15、②③④【解析】分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.详解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b>的解集是x<-2或0<x<1,故④正确;故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.16、(-1,2)【解析】
因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P点,然后求得平移后的直线,联立方程,解方程即可.【详解】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,若直线向上平移与抛物线相切,切点即为P点,设平移后的直线为y=-x-2+b,∵直线y=-x-2+b与抛物线y=x2+x+2相切,∴x2+x+2=-x-2+b,即x2+2x+4-b=0,则△=4-4(4-b)=0,∴b=3,∴平移后的直线为y=-x+1,解得x=-1,y=2,∴P点坐标为(-1,2),故答案为(-1,2).【点睛】本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P点是解题的关键.17、【解析】
根据正弦和余弦的概念求解.【详解】解:∵P是∠α的边OA上一点,且P点坐标为(3,4),∴PB=4,OB=3,OP==5,故sinα==,cosα=,∴sinα+cosα=,故答案为【点睛】此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.18、2【解析】试题解析:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.在直角△OCE中,则AE=OA−OE=5−3=2.故答案为2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】
详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得x+2y=解得x=答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得100a+15010-a解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.20、(1)1;(2)【解析】(1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;(2)过G作GP⊥AC,垂足为P,设GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.21、(1)126;(2)作图见解析(3)768【解析】试题分析:(1)根据扇形统计图求出所占的百分比,然后乘以360°即可;(2)利用“查资料”人人数是40人,查资料”人占总人数40%,求出总人数100,再求出32人;(3)用部分估计整体.试题解析:(1)126°(2)40÷40%-2-16-18-32=32人(3)1200×=768人考点:统计图22、(1)详见解析;(2)详见解析【解析】
(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,再根据全等三角形的性质和等量关系即可求解;(2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.【详解】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中点;(2)若AB=AC,则四边形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.23、(1)DE与⊙O相切;理由见解析;(2).【解析】
(1)连接OD,利用圆周角定理以及等腰三角形的性质得出OD⊥DE,进而得出答案;(2)得出△BCD∽△ACB,进而利用相似三角形的性质得出CD的长.【详解】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB是⊙O直径∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD⊥DE∴DE与⊙O相切;(2)∵R=5,∴AB=10,在Rt△ABC中∵tanA=∴BC=AB•tanA=10×,∴AC=,∵∠BDC=∠ABC=90°,∠BCD=∠ACB∴△BCD∽△ACB∴∴CD=.【点睛】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.24、-1,-9.【解析】
先去括号,再合并同类项;最后把x=-2代入即可.【详解】原式=,当x=-2时,原式=-8-1=-9.【点睛】本题考查了整式的混合运算及化简求值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳务分包合同中的质量要求
- 石材购销合同案例示例
- 劳动合同补充协议的监督与执行程序
- 工厂工业品采购合同模板
- 审计服务合同范本版示例格式
- 联盟共营合同风险防范
- 员工担保书格式样本
- 合伙人之间的利润分配约定
- 制冷机购销合约
- 坯布销售与供应合同
- 2024年P气瓶充装理论考试题及答案
- 2024年新商务星球版七年级地理上册全册教学课件
- 北京高校物业管理服务人员配置及费用测算指导意见
- 外研版(三起)(2024)三年级上册英语Unit 6《My sweet home》单元整体教学设计及反思
- 2024-2025学年统编版(2024)道德与法治小学一年级上册教学设计
- 《新时代大学生劳动教育教程(第二版)》大学生劳动教育全套教学课件
- 2024年全国职业院校技能大赛高职组(化学实验技术赛项)考试题库-下(多选、判断题)
- 金字塔原理完整版-课件
- 人工智能(AI)训练师技能鉴定考试题库大全-上(单选题)
- 2024八年级数学上册第十五章分式检测题含解析新版新人教版
- 2024年贵州省黔东南州直属事业单位招聘108人历年(高频重点复习提升训练)共500题附带答案详解
评论
0/150
提交评论