版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.cm B.cm C.cm D.cm2.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1443.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是()A. B.C. D.5.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.6.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()A. B.2 C. D.27.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108 B.21×106 C.2.1×107 D.2.1×1068.如图,已知⊙O的半径为5,AB是⊙O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为()A.1 B.2 C.3 D.89.估计5﹣的值应在()A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间10.一元二次方程的根的情况是()A.有一个实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.没有实数根11.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次12.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A.12米 B.4米 C.5米 D.6米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。14.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.15.如图,在四边形中,,,,,,点从点出发以的速度向点运动,点从点出发以的速度向点运动,、两点同时出发,其中一点到达终点时另一点也停止运动.若,当__时,是等腰三角形.16.如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=________.17.若圆锥的地面半径为,侧面积为,则圆锥的母线是__________.18.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图1和图2所示的统计图,则B品牌粽子在图2中所对应的扇形的心角的度数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是⊙O的直径,点C是AB的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且OEEB求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.20.(6分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.21.(6分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)22.(8分)抛物线:与轴交于,两点(点在点左侧),抛物线的顶点为.(1)抛物线的对称轴是直线________;(2)当时,求抛物线的函数表达式;(3)在(2)的条件下,直线:经过抛物线的顶点,直线与抛物线有两个公共点,它们的横坐标分别记为,,直线与直线的交点的横坐标记为,若当时,总有,请结合函数的图象,直接写出的取值范围.23.(8分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:(1)该班学生选择观点的人数最多,共有人,在扇形统计图中,该观点所在扇形区域的圆心角是度.(2)利用样本估计该校初三学生选择“中技”观点的人数.(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).24.(10分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分.求证:;若的直径长8,,求BE的长.25.(10分)如图,内接于,,的延长线交于点.(1)求证:平分;(2)若,,求和的长.26.(12分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.(1)直接写出∠D与∠MAC之间的数量关系;(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;②如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.27.(12分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题解析:∵菱形ABCD的对角线根据勾股定理,设菱形的高为h,则菱形的面积即解得即菱形的高为cm.故选B.2、D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.3、C【解析】
先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
后面一排分别有2个、3个、1个小正方体搭成三个长方体,
并且这两排右齐,故从正面看到的视图为:.
故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.4、C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系5、C【解析】
根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.6、A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ABHD为矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故选A.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.7、D【解析】2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成的形式,其中,n是比原整数位数少1的数.8、B【解析】
连接OP、OA,根据垂径定理求出AQ,根据勾股定理求出OQ,计算即可.【详解】解:由题意得,当点P为劣弧AB的中点时,PQ最小,
连接OP、OA,由垂径定理得,点Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故选:B.【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.9、C【解析】
先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值应在7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.10、D【解析】试题分析:△=22-4×4=-12<0,故没有实数根;故选D.考点:根的判别式.11、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.12、A【解析】
试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故选A.【详解】请在此输入详解!二、填空题:(本大题共6个小题,每小题4分,共24分.)13、288°【解析】
母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.【详解】解:如图所示,在Rt△SOA中,SO=9,SA=15;则:设侧面属开图扇形的国心角度数为n,则由得n=288°故答案为:288°.【点睛】本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.14、【解析】
根据点E、F在边AB、AC上,可知当点E与点B重合时,CP有最小值,当点F与点C重合时CP有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E与点B重合时,CP的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F与点C重合时,CP的值最大,此时CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.15、或.【解析】
根据题意,用时间t表示出DQ和PC,然后根据等腰三角形腰的情况分类讨论,①当时,画出对应的图形,可知点在的垂直平分线上,QE=,AE=BP,列出方程即可求出t;②当时,过点作于,根据勾股定理求出PQ,然后列出方程即可求出t.【详解】解:由运动知,,,,,,,是等腰三角形,且,①当时,过点P作PE⊥AD于点E点在的垂直平分线上,QE=,AE=BP,,,②当时,如图,过点作于,,,,,四边形是矩形,,,,在中,,,,点在边上,不和重合,,,此种情况符合题意,即或时,是等腰三角形.故答案为:或.【点睛】此题考查的是等腰三角形的定义和动点问题,掌握等腰三角形的定义和分类讨论的数学思想是解决此题的关键.16、35【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.17、13【解析】试题解析:圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.设母线长为R,则:解得:故答案为13.18、120°【解析】
根据图1中C品牌粽子1200个,在图2中占50%,求出三种品牌粽子的总个数,再求出B品牌粽子的个数,从而计算出B品牌粽子占粽子总数的比例,从而求出B品牌粽子在图2中所对应的圆心角的度数.【详解】解:∵三种品牌的粽子总数为1200÷50%=2400个,又∵A、C品牌的粽子分别有400个、1200个,∴B品牌的粽子有2400-400-1200=800个,则B品牌粽子在图2中所对应的圆心角的度数为360×.故答案为120°.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)BH=125【解析】
(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是AB的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OCBF∵OB=2,∴OC=OB=2,AB=4,OEEB∴2BF∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=12AB•BF=1∴AB•BF=AF•BH,∴4×3=5BH,∴BH=125【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.20、(1)证明见解析(2)74【解析】试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.试题解析:(1)证明:因为四边形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因为O为BD的中点,所以OB=OD,在△POD与△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:AB即62解得:t=74即运动时间为74考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.21、电视塔高为米,点的铅直高度为(米).【解析】
过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=100,根据山坡坡度=1:2表示出PB=x,AB=2x,在Rt△PCF中利用三角函数即可求解.【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.22、(1);(2);(3)【解析】
(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)根据抛物线的对称轴及即可得出点、的坐标,根据点的坐标,利用待定系数法即可求出抛物线的函数表达式;(3)利用配方法求出抛物线顶点的坐标,依照题意画出图形,观察图形可得出,再利用一次函数图象上点的坐标特征可得出,结合的取值范围即可得出的取值范围.【详解】(1)∵抛物线的表达式为,∴抛物线的对称轴为直线.故答案为:.(2)∵抛物线的对称轴为直线,,∴点的坐标为,点的坐标为.将代入,得:,解得:,∴抛物线的函数表达式为.(3)∵,∴点的坐标为.∵直线y=n与直线的交点的横坐标记为,且当时,总有,∴x2<x3<x1,∵x3>0,∴直线与轴的交点在下方,∴.∵直线:经过抛物线的顶点,∴,∴.【点睛】本题考查了二次函数的性质、待定系数法求二次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)根据点的坐标,利用待定系数法求出二次函数表达式;(3)依照题意画出图形,利用数形结合找出.23、(4)A高中观点.4.446;(4)456人;(4)16【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;(4)∵800×44%=456(人),∴估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种.所以恰好选到4位女同学的概率=212考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.24、(1)证明见解析;(2).【解析】
先利用等腰三角形的性质得到,利用切线的性质得,则CE∥BD,然后证明得到BE=CE;作于F,如图,在Rt△OBC中利用正弦定义得到BC=5,所以,然后在Rt△BEF中通过解直角三角形可求出BE的长.【详解】证明:,,,是的切线,,,.平分,,,;解:作于F,如图,
的直径长8,.,,,,在中,设,则,,即,解得,.故答案为(1)证明见解析;(2).【点睛】本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形.25、(1)证明见解析;(2)AC=,CD=,【解析】分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.本题解析:解:(1)证明:延长AO交BC于H,连接BO.∵AB=AC,OB=OC,∴A,O在线段BC的垂直平分线上.∴AO⊥BC.又∵AB=AC,∴AO平分∠BAC.(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.∴∠EBC=90°,BC⊥BE.∵∠E=∠BAC,∴sinE=sin∠BAC.∴=.∴CE=BC=10.∴BE==8,OA=OE=CE=5.∵AH⊥BC,∴BE∥OA.∴=,即=,解得OD=.∴CD=5+=.∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.∴OH=BE=4,CH=BC=3.∴AH=5+4=9.在Rt△ACH中,AC===3.点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.26、(1)相等或互补;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】
(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题,②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度高端商务区商铺租赁管理协议4篇
- 专项工程项目监管2024版委托协议版A版
- 2025年度高速公路服务区场标准化改造提升合同4篇
- 二零二五年度高压直流变压器采购及运输合同3篇
- 2025年度图书配送与图书馆管理系统承包合同4篇
- 2025年度拆迁安置补偿房屋买卖合同范本(含维修)4篇
- 2024行政文员劳动合同范本:合同违约与赔偿3篇
- 2024食堂食品安全与承包合同
- 2024讲座教授聘任合同模板
- 2025年度城市老旧小区拆迁安置房买卖合同规范版4篇
- 物业民法典知识培训课件
- 2023年初中毕业生信息技术中考知识点详解
- 2024-2025学年山东省德州市高中五校高二上学期期中考试地理试题(解析版)
- 《万方数据资源介绍》课件
- 麻风病病情分析
- 《急诊科建设与设备配置标准》
- 第一章-地震工程学概论
- TSGD7002-2023-压力管道元件型式试验规则
- 2024年度家庭医生签约服务培训课件
- 建筑工地节前停工安全检查表
- 了不起的狐狸爸爸-全文打印
评论
0/150
提交评论