版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在平面直角坐标系中,将点P(﹣4,2)绕原点O顺时针旋转90°,则其对应点Q的坐标为()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)2.“车辆随机到达一个路口,遇到红灯”这个事件是()A.不可能事件 B.不确定事件 C.确定事件 D.必然事件3.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π4.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=()A.15° B.30° C.45° D.60°5.如图所示的几何体的主视图是()A. B. C. D.6.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15° B.55° C.65° D.75°7.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140° B.160° C.170° D.150°8.在△ABC中,∠C=90°,tanA=125,△ABC的周长为60,那么△ABCA.60 B.30 C.240 D.1209.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是()A. B.C. D.10.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.12.如图,二次函数y=ax2+bx+c(a≠0)的图象与轴相交于点A、B,若其对称轴为直线x=2,则OB–OA的值为_______.13.如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么∠AOC度数为_____度.14.如图,已知AB∥CD,=____________15.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).16.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是_____.17.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.三、解答题(共7小题,满分69分)18.(10分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c飞行.小球落地点P坐标(n,0)(1)点C坐标为;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.19.(5分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.20.(8分)先化简,,其中x=.21.(10分)在数学课上,老师提出如下问题:小楠同学的作法如下:老师说:“小楠的作法正确.”请回答:小楠的作图依据是______________________________________________.22.(10分)如图,在平面直角坐标系中,一次函数y=﹣12x+3的图象与反比例函数y=kx(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点23.(12分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).参考数据sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.24.(14分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.【详解】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(﹣4,2),∴Q点坐标为(2,4),故选A.【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.2、B【解析】
根据事件发生的可能性大小判断相应事件的类型即可.【详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、B【解析】
直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.4、B【解析】
根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.【详解】解:∵OA=AB,OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∴∠ACB=30°,故选B.【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.5、C【解析】
主视图就是从正面看,看列数和每一列的个数.【详解】解:由图可知,主视图如下故选C.【点睛】考核知识点:组合体的三视图.6、D【解析】
根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.7、B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考点:角度的计算8、D【解析】
由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.【详解】如图所示,由tanA=125设BC=12x,AC=5x,根据勾股定理得:AB=13x,由题意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,则△ABC面积为120,故选D.【点睛】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.9、B【解析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.故选:B.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.10、D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.二、填空题(共7小题,每小题3分,满分21分)11、或【解析】
根据裁开折叠之后平行四边形的面积可得CD的长度为2+4或2+.【详解】如图①,当四边形ABCE为平行四边形时,作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T.∵AB=BC,∴四边形ABCE是菱形.∵∠BAD=∠BCD=90°,∠ABC=150°,∴∠ADC=30°,∠BAN=∠BCE=30°,∴∠NAD=60°,∴∠AND=90°.设BT=x,则CN=x,BC=EC=2x.∵四边形ABCE面积为2,∴EC·BT=2,即2x×x=2,解得x=1,∴AE=EC=2,EN=,∴AN=AE+EN=2+,∴CD=AD=2AN=4+2.如图②,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形.∵∠A=∠C=90°,∠ABC=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠EBD=∠ADB=15°,∴∠AEB=30°.设AB=y,则DE=BE=2y,AE=y.∵四边形BEDF的面积为2,∴AB·DE=2,即2y2=2,解得y=1,∴AE=,DE=2,∴AD=AE+DE=2+.综上所述,CD的值为4+2或2+.【点睛】考核知识点:平行四边形的性质,菱形判定和性质.12、4【解析】试题分析:设OB的长度为x,则根据二次函数的对称性可得:点B的坐标为(x+2,0),点A的坐标为(2-x,0),则OB-OA=x+2-(x-2)=4.点睛:本题主要考查的就是二次函数的性质.如果二次函数与x轴的两个交点坐标为(,0)和(,0),则函数的对称轴为直线:x=.在解决二次函数的题目时,我们一定要注意区分点的坐标和线段的长度之间的区别,如果点在x的正半轴,则点的横坐标就是线段的长度,如果点在x的负半轴,则点的横坐标的相反数就是线段的长度.13、1.【解析】
首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出∠AOC的度数.【详解】解:∵弦AC与半径OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等边三角形,∴∠AOB=60°,∴∠AOC=1°,故答案为1.【点睛】本题主要考查了垂径定理的知识,解题的关键是证明△OAB是等边三角形,此题难度不大.14、85°.【解析】如图,过F作EF∥AB,而AB∥CD,∴AB∥CD∥EF,∴∠ABF+∠BFE=180°,∠EFC=∠C,∴∠α=180°−∠ABF+∠C=180°−120°+25°=85°故答案为85°.15、y=x2+2x(答案不唯一).【解析】
设此二次函数的解析式为y=ax(x+2),令a=1即可.【详解】∵抛物线过点(0,0),(﹣2,0),∴可设此二次函数的解析式为y=ax(x+2),把a=1代入,得y=x2+2x.故答案为y=x2+2x(答案不唯一).【点睛】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.16、【解析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:由于共有8个球,其中红球有5个,则从袋子中随机摸出一个球,摸出红球的概率是.故答案为.【点睛】本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17、10,,.【解析】解:如图,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10;如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=;如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC==.故答案为10,,.三、解答题(共7小题,满分69分)18、(1)(3,3);(2)顶点N坐标为(,);(3)详见解析;(4)<n<.【解析】
(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)将点N的坐标代入y=x2,看是否符合解析式即可;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x=3时y<2,据此列出关于n的不等式组,解之可得.【详解】(1)∵A(2,2),B(3,2),D(2,3),∴AD=BC=1,则点C(3,3),故答案为:(3,3);(2)把(0,0)(n,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线解析式为y=﹣x2+nx=﹣(x﹣)2+,∴顶点N坐标为(,);(3)由(2)把x=代入y=x2=()2=,∴抛物线的顶点在函数y=x2的图象上运动;(4)根据题意,得:当x=2时y>3,当x=3时y<2,即,解得:<n<.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.19、(1);(2)∠CDE=2∠A.【解析】
(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO.再由△AOE∽△ACB,得到OE的长;(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.20、【解析】
根据分式的化简方法先通分再约分,然后带入求值.【详解】解:当时,.【点睛】此题重点考查学生对分式的化简的应用,掌握分式的化简方法是解题的关键.21、两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.【解析】
根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据.【详解】解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定和性质.22、(1)反比例函数的表达式为y=4x(x>0);(2)点P【解析】
(1)根据点A(a,2),B(4,b)在一次函数y=﹣12x+3的图象上求出a、b的值,得出A、B(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.【详解】(1)∵点A(a,2),B(4,b)在一次函数y=﹣12x∴﹣12a+3=2,b=﹣1∴a=2,b=1,∴点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025茶叶供货的合同书
- 教育地产网签合同模板
- 二零二五年度高空起重机械操作及维护合同3篇
- 户外运动器材租赁合同
- 2025油品买卖合同范本模板
- 正规房产中介合同样本
- 城市照明安全施工协议
- 集装箱堆场租赁协议解除
- 山东施工合同违约金
- 人力资源经理聘用合同
- 弹性力学仿真软件:SolidWorks Simulation:疲劳分析与寿命预测技术教程
- 2024年公务员考试必背常识大全
- 劳工与人权管理核心制度
- 北师大版数学五年级上册第三单元《倍数与因数》大单元整体教学设计
- 中药灌肠方法
- 医美整形美容医院眼部抗衰品牌课件
- 软件研发安全管理制度
- 大学暑假假期社会实践心得体会3篇
- 科普产业发展现状调查报告
- 2024湖南湘电集团有限公司招聘笔试参考题库附带答案详解
- 新课标人教版小学四年级体育与健康下册全册教案设计及教学反思
评论
0/150
提交评论