高中物理选修3-1磁场知识点及习题_第1页
高中物理选修3-1磁场知识点及习题_第2页
高中物理选修3-1磁场知识点及习题_第3页
高中物理选修3-1磁场知识点及习题_第4页
高中物理选修3-1磁场知识点及习题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、磁场知识要点1.场的产生⑴磁极周围有磁场。⑵电流周围有磁场(奥斯特安培提出分子电流假(叫磁性起源假说磁极的磁场和电流的磁场都是由电荷的运动产生的等于说所有磁场都是由运动电荷产生的⑶变化的电场在周围空间产生磁场(麦克斯韦2.场的基本性质磁场对放入其中的磁极和电流有磁场力的作磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作这一点应该跟电场的基本性质相比较。3.感应强度B

FIL

(条件是匀强磁场中,或ΔL很,并且L⊥B

磁感应强度是矢量。单位是特斯拉,符号为T,1T=1N/(Am)=1kg/(As)4.感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止极的指向。磁感线的疏密表示磁场的强弱。⑵磁感线是封闭曲线(和静电场的电场线不同⑶要熟记常见的几种磁场的磁感线:⑷安培定则(右手螺旋定则直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。5.通量如果在磁感应强度为的匀强磁场中有个与磁场方向垂直的平面,其面积为S,则定义B与的乘积为穿过这个面的磁通量,Φ表示Φ是标量但是有方向(进该面或出该面为韦伯,符号为W。1W=1Tms=1kgms)。可以认为磁通量就是穿过某个面的磁感线条数。在匀强磁场磁感线垂直于平面的情况下=Φ/S所以磁感应强度又叫磁通密度在匀强磁场中,当与S夹角为α时有BSsin。地球磁场

通电直导线周围磁场

通电环行导线周围磁场

二、安培(磁场对电流的作用)知识要点1.培力方向的判定⑴用左手定则。⑵用“同性相斥,异性相吸适用于磁铁之间或磁体位于螺线管外部时⑶用“同向电流相吸,反向电流相斥映了磁现象的电本质以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。2.培力大小的计算:FBLIαα为B间的夹角)高中只要求会计算=0不受安培力)和α=90°种情况。例题分析例1:如图所示,以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?解先画出导线所在处的磁感线上下两部分导线所受安培力的方

I

SN向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转后平移析的关键是画出相关的磁感线。例2条形磁铁放在粗糙水平面上中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会__(大、减小还是不变?)水平面对磁铁的摩擦力大小为__。解本题有多种分析方法⑴画出通电导线中电流的磁场中

F

F/F

F通过两极的那条磁感线(如图中粗虚线所示可看出两极受的磁场力的合力竖直向上磁铁对水平面的压力减小但不受摩擦力⑵画出条形磁铁的磁感线中通过通电导线的那一(如图中细虚线所示出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。例3如图在条形铁极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等

SN效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况例4电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转?解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥可判定电子流向左偏转本题用其它方法判断也行,但不如这

i

个方法简洁例5:图所示,光滑导轨与水平面成角,导轨宽L。匀强磁场感应强度为B。属杆长也为L,量为m,水平放在导轨上。当回路总电流为I时,金属杆正好静止。求:⑴B至少多大?这时B方向如何?⑵若保持B的大小不变而B的向改为竖直向上,应把回路总电调多大才能使金属杆保持静止?解:画出金属杆的截面图。由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,也最小。根据左手定则,这时应垂直于导轨平面向上,大小满足:BILmgsinα=sinα。当B的方向改为竖向上时,这时安培力的方向变为水平向右,沿导轨

αBα

α方向合力为零,得BILcosαmgα,I/cosα解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系例6:如所示,质量为m的铜棒搭在形导线框右端,棒长和框宽均为L,磁感应强度为B匀强磁场方向竖直向下。电键闭合后,在磁场力作用下铜棒被平抛出去,下落h落在水平面上,水平位移为s。求闭合电键后通过铜棒的电荷量。解:闭合电键后的极短时间内,铜棒受安培力向右的冲量FΔt=被

Bs平抛出去,其F=BIL,瞬时电流和时间的乘积等于电荷QI,由平抛规律可算铜棒离开导线框时的初速

s,最终可t

BL

三、洛伦力知识要点1.伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。计算公式的推导所示导线受到的磁场培力F=BILI=nesvF设导线中共有N个自由电子N=nsL;每电子受的磁场力为F,则F=NF。由上四式可得F=qvB。条件是v与B直。当与B成θ角时,sinθ2.伦兹力方向的判定在用左手定则时,四指必须指电流方向(不是速度方向正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。

v

L3.伦兹力大小的计算带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:r,TBq

B

y

v4.电粒子在匀强磁场中的偏转⑴穿过矩形磁场区。一定要先画好辅助线(半径、速度及延长线角sinθL/R求出。侧移由=-(R-y2出。经历时间t

Bq

得出。

rvO注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!

v⑵穿过圆形磁场区。画好辅助线(半径、速度、轨迹圆的圆心、连心线角可由

rtan2R

O/出。经历时间由

t

mBq

得出。注意:由对称性,射出线的反向延长线必过磁场圆的圆心。例题分析例1:流体发电机原理图如右。等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。该发电机哪个极板为正极?两板间最大电压为多少?解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。所以上极板为正。正、负极板间会产生电场。当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv。当外电路断开时,这也就是电动势E当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。这时电动势仍是E=Bdv,但路端电压将小于Bdv。在定性分析时特别需要注意的是:

++++++B----―

⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于,但电动势不变(和所有电源一样,电动势是电源本身的性质⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。在外电路断开时最终将达到平衡态。

3a3a例3如直线上方有磁感应强度为的匀强磁场。正、负电子同时从同一点以与MN成角的同样速度v射磁场(电子质量为,电荷为e们从磁场中射出时相距多远?射出的时间差是多少?M

N例4一个质量为电荷量带电粒子x轴上(0)点以速度正方向60°的向射入第一象限内的匀强磁场中直于

yy轴射出第一象限。匀强磁场的磁感应强和射出点的坐。解由射、点可心并出半径为

v

Br

a

mv3mv;射出点坐标为(0Bq2aq

O/

v

x

EvvEvv四、带电子在混合场中的运动知识要点1.度选择器正交的匀强磁场和匀强电场组成速度选择器带电粒子必须以唯一确定的速(包括大小方向)才能匀速(或者说沿直线)通过速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平衡得出qvB=Eq,。在本图中,速B度方向必须向右。⑴这个结论与离子带何种电荷、电荷多少都无关。⑵若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方

+++++++--―――――向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。2.电微粒在重力、电场力、磁场力共同作用下的运动⑴带电微粒在三个场共同作用下做匀速圆周运动。必然是电场力和重力平衡,而洛伦兹力充当向心力。⑵与力学紧密结合的综合题要认真分析受力情况和运动情(包括速度和加速度要时加以讨论。例题分析例某电粒子从图中速度选择器左端由中点O以速度向右射去,从右端中心a下方的b以速度v出;若增大磁感应强度B,粒子将打到a点上的点,且有ac=ab,该粒子带__;第二次射出时的速度为_____。

c解B增大后向上偏说明洛伦兹力向上,所以为带正电。由于洛伦

0,在磁场中偏转:,由以上两式可得0m兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。0,在磁场中偏转:,由以上两式可得0m11mv22

,v

例2如图所示,个带电粒子两次以同样的垂直于场线的初速度v分别穿越强电场区和匀强磁场区,场区的宽度均为L偏转角度均为,求∶解:分别利用带电粒偏角公式。电场偏转:sinmvEv0可以证明当偏转角相同时侧移必然不同(电场中侧Bcos

v

B

L

α移较大侧移相同时,偏转角必然不同(磁场中偏转角较大例3一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。则该带电微粒必然带_____,旋转方向_____若已知圆半径r电场强度为E磁感强度为B,则线速为_____。解:因为必须有电场力与重力平衡,所以必为负电;由左手定则得逆时针

E转动;再由

和r

mvBrgE例4:质为m带电量为的小球套在竖直放置的绝缘杆上,球与杆间的动摩擦因数为μ。匀强电场和匀磁场的方向如图所示,电场强度为E磁感应强度为B。小球由静止释放后沿杆下滑。设杆足够长,电场和磁场也足够大,求运动过程中小球的最大加速度和最大速度。解:不妨假设设小球带正电(带负电时电场力和洛伦兹力都将反向,结论相同)。刚释放时小球受重力、电场力、弹力、摩擦力作用,向下加速;开始运动后又受到洛伦兹力作用,弹力、摩擦力开始减小;当洛伦兹力等于电场力时加速度最大为g。v的大,洛伦兹力大于电场力,弹力方向变为向右,且不断增大,摩擦力随着增大,加速度减小,当摩擦力和重力大小相等时,小球速度达到最。B若将磁场的方向反向,而其他因素都不变,则开始运动后

N

fmg

v

fqvBvmg洛伦兹力向右,弹力、摩擦力不断增大,加速度减小。所以开始的加速度最大为

m

E;摩擦力等于重力时速度最大,。分)如图所示为一种质谱仪示意图,由加速电场、静电分析器和磁分析器组成。已知:静电分析器通道的半径为R,均匀辐射电的场强为E磁分析器中有垂直纸面向外的匀强磁场,磁感强度为。问1)了使位于电量为质量为的离子,从静止开始经加速电场加速后沿图中圆弧虚线通过静电分析器,加速电场的电压应为多大?(2)离子由P点入磁分析器后,最终打在乳胶片上的点,该点距入射点P多远?

解:()离子在加速场中加速,根据动能定理有①(3分离子在辐向电场中做匀速圆周运动,电场力提供向心力,有②(4分解得③分)()离子在匀强磁场做匀速圆周运动,洛伦兹力提供向心力,有④分)由②、④式得⑤分)故分)例6(20分如图所示,固定在水平桌面上的光滑金属框架于竖直向下磁感应强度为的匀强磁场中。金属ab与金属框架接触良好。此时abed构成一个边长为l正方形,金属杆的电阻为r其余部分电阻不计。

⑴若从t刻起,磁场的磁感应强度均匀增加,每秒钟增量为k,施加一水平拉力保金属杆静止不动,求金属杆中的感应电流。⑵在情况⑴中金属杆始终保持不动,当t=t1秒末时,求水平拉力的大小。⑶若从t刻起,磁感应强度逐渐减小,当金属杆在框架上以恒定速度向右做匀速运动时,可使回路中不产生感应电流。写出磁感应强度B与时间t函数关系式。解(1)设时磁感应强度为,由意得①(1分)产生感应电动势为②(3分)根据闭合电路欧姆定律得,产生的感应电流③(3分)(2)由题意,根据二力平衡,安培力等于水平拉力,即④(1分)⑤(3分)由①③⑤得,所以(2分)(3)回路中电流为0,说明磁感应强度逐渐减小产生的感应电动势和金属杆运动产生的感应电动势

相反,即,则有(4分)

解得(2分)例7(19分)如图,在轴上方有磁感强度大小为,方向垂直纸面向里的匀强磁场轴下方有磁感强度大小为,方向垂纸面向外的匀强磁场。一质量、电量为的带电粒子(不计重力),

从x上点以速度v0垂直x轴向射出。求:(1)经多长时间粒子第次到达x轴(初位置O点为第一次)(2粒子第三次到达轴时离O点的距离。解:()粒子运动轨迹示图如右图(分)由牛顿第二定律①(分)②(分)得1=

(2)T2=

(2)粒子第三次到达轴需时间t=

(1分

()由①式可知r1

(2)r=

(2)粒子第三次到达轴时离点的距离s2r1r=

(2分例、图所示,在第I象限范围内有垂直平面的匀强磁,磁感应强度为B。质量为、电量大小为的带电粒子(不计重力),a平面里经原点O入磁场中,初速度为0,与轴成角,试分析计算:()带电粒子从何处开磁场?穿越磁场时运动方向发生的偏转角多大?()带电粒子在磁场运动时间多长?解:带电粒子若带负电荷,进入磁场后将向x轴偏转,从A点开磁场;若带正电荷,进入磁场后将向轴偏转,从B点离开磁场;如图所示.带电粒子进入磁场后作匀速圆周运动,轨迹半径均为.圆心位于过O点与v0垂直的同一条直线上,O1=O2O1=O2=R,带粒子沿半径为R圆周运动一周的时间为.(1)粒子若带负电荷,进入磁场后将向轴偏转,A点离开磁场,运动方向发生的偏角为:θ1=2==。A点原点O的距离为:粒子若带正电荷,进入磁场后将向y轴偏转,在B离开磁场;运动方向发生的偏角为:

θ22900-=。B点到原点的距离为:(2)粒子若带负电荷,进入磁场后将向轴偏转,从A点离开磁场,运动的时间为:粒子若带正电荷,进入磁场后将向y轴偏转,在B离开磁场;运动的时间为:例9、右图是科学史上一张著名的实验照片显示一个带电粒子在云室中穿过某种金属板运动的径迹。云室旋转在匀强磁场中,磁场方向垂直照片向里。云室放的金属板对粒子的运动起阻碍作用。分析此径迹可知A.带正电,由下往上运动B.带正电,由上往下运动C.带负电,由上往下运动D.带负电,由下往上运动答案:A

中横粒子解析:粒子穿过金属板后,速度变小,由半径公式

r

qB

可知,半径变小,粒子运动方向为由下向上;又由于洛仑兹力的方向指向圆心,由左手定则,粒子带正电。选例、如所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为,其右端接有阻值为的电阻,整个装置处在竖直向上磁感应强度大小为的匀强磁场中。一质量为(质量分布均匀)的导体杆垂直于导轨放,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数。现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离L,速度恰好达到最大(运动过程中杆始终与导轨保持垂直杆接入电路的电阻为r,轨电阻不计,重力加速度大小为。则此过程A.杆速度最大值为

........................B.过电阻的电量为C.恒力做功与摩擦力做的功之和等于杆动能的变化量D.恒力F做的功与安倍力做的功之和大于杆动能的变化量答案BD【解析当杆达到最大速度时,

F

d2r

mvm

d2

错;由公式

q

BR

对棒从开始到达到最大速度的过程中由动能定理有:WFf

K

,其中

W

f

mgW

,恒F做的功与擦力做的功之和等于杆动能的变化量与回路产生的焦耳热之和,C错;恒力做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D对例11、图甲,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E方向沿斜面向下的匀强电场中。一劲度系数为k的绝缘轻质弹簧的端固定在斜面底端根弹簧处于自然状态一质量为电量为(q>0)的滑块从距离弹簧上端为处静止释放滑块在运动过程中电保持不变,设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g(1)求滑块从静止放到与弹簧上端接触瞬间所经历的时间t(若滑块在沿斜面向下运动的整个过程中最大速度大小为

v,求滑块从静止释放到速度大小为v过程中弹簧的弹力所做的功W(3)从滑块静止释瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整个过程中速度与时间关系v-t图象。图中横坐标轴上的tt及t分别表示滑块第一次与弹簧上端接触第次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的为滑块在t时刻的速度大小,v是题中所指的物理量小题不要求写出计算过程)答案(1

t

2msqEmgsin

;(2

1sinmvmgsin)•(2k

)

;(3)【解析】本题考查的是电场中斜面上的弹簧类问题。涉及到匀变速直线运动、运用动能定理处理变力功问题、最大速度问题和运动过程分析。(1块从静止释放与弹簧刚接触的过程中作初速度为零的匀加速直线运动速度大小为a,则有qE+mg=

mm

12

②联立①②可得t

2msqEmgsin

③(2滑块速度最大时受力平衡,设此时弹簧压缩量为,则有mgsin

kx

④从静止释放到速度达到最大的过程中,由动能定理得(mg

)•(x)m0

12

mvm

⑤联立④⑤可得

1mgsinmvmg)•(2k

)

s(3如图例12、为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10T,X上距坐标原点L=0.50mP处为离子的入射口Y上安放接收器,现将一带正电荷的粒子以m/s速率从P射入磁场子在轴上距坐标原点的M处观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,记其重力。(1求上述粒子的比荷

qm

;(2如果在上述粒子运动过程中的某个时刻在第一象限内再加一个匀强电场就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3在处观测到按题设条件运动的上述粒子一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。答(1

qm

(或10C/kg

(3)

S

0.25m

【解析】本题考查带电粒子在磁场中的运动。第(2)问涉及到复合场(速度选择器模型)第(问是带电粒子在有界磁场(矩形区域)中的运动。(1设粒子在磁场中的运动半径为r。如图甲,依题意M、P连线即为该粒在磁场中作匀速圆周运动的直径,由几何关系得r

22

①由洛伦兹力提供粒子在磁场中作匀速圆周运动的向心力,可得m

r

②联立①②并代入数据得qm

10C/kg(7C/kg③(2设所加电场的场强大小E如图乙,当粒子子经点,速度y轴正方向,依题意,此时加入沿x轴正向的匀强电场,电场力与此时洛伦兹力平衡,则有qvB代入数据得E70/C

④⑤所加电场的长枪方向沿x正方向。由几何关系可知,圆弧PQ所对应的圆心角为,设带点粒子做匀速圆周运动的周期为,所求时间为,则有t

360

T

r

联立①⑥⑦并代入数据得t

⑧(3如图丙,所求的最小矩形是

1

,该区域面积r

2

⑨联立①⑨并代入数据得0.25

2矩形如图丙中

1

(虚线)例13、如图,在x轴方有匀强磁场,磁感应强度大小为B向垂直于y平面向外是上距原点为h一点,N轴上距原点的点。A是一平行于轴挡板,与x的距离为,A的中点在轴上,长度略小于。带点粒子与挡板碰撞前后方向的分速度不变y向的分速度反向、大小不变。质量为m电荷量为q的粒子从P点瞄准N入射,最后又通过P点。不计力。求粒子入射速度的所有可能值。26.【析】设粒子的入射速度v,第次射出磁场的点为

N

O

,板碰撞后再次进入磁场的位置为N

1

.子在磁场中运动的轨道半径R,有

qB

…⑴,子速率不变,次进入磁场与射出磁场位置间距离

x

保持不变有

NN1OO

…⑵,粒子射出磁与下一次进入磁场位置间的距离始终不变,2

N

O

相等.图可以看出

2

……⑶设粒子最终离开磁场时,档板相碰次(n=0、1…).若粒子能回到P,对称性射点的x标应为a,即

2

……⑷,由⑶⑷两式得

x1

nn

a

……⑸若粒子与挡板发生碰撞

a4

……⑹联立⑶⑷⑹得

n<3……

0⑺联立⑴⑵⑸得0v

2

a

………⑻把

sin

a

h22

代入⑻中得o

amh

,n

…………⑼

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论