版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学建模作业1.什么是数学模型?答:所谓数学模型,是指针对或参照现实世界中某类事物系统的主要特征、主要关系,经过简化与抽象,用形式化的数学语言概括或近似地加以表述的一种数学结构.一般表现为数理逻辑的逻辑表达式、各种数学方程(如代数方程、微分方程、积分方程等)及反映量与量之间相互关系的图形、表格等形式.它或者能解释特定现象的现实状态,或者能预测对象的未来状态,或者能提供处理对象的最优决策与控制.好的数学模型应具备可靠性和可解性(也叫适用性)两方面的特性:可靠性指在允许的误差范围内,能反映出该系统有关特性的内在联系;可解性指易于数学处理与计算.数学模型方法将复杂的研究对象简单化、抽象化,撇开对象的一些具体特征,减少其参数,只抽取其主要量、量的变化及量与量之间的相互关系,在“纯粹”的形态上进行研究,突出主要矛盾,忽略次要矛盾,用数学语言刻画出客观对象量的规律性,简洁明了地描述现实原形,揭示出其本质的规律,并在对模型修正、求解的基础上使原问题得以解决.可以说,数学模型是对现实原形的一种理想化处理是一个科学的抽象过程,因而具有高度的抽象性与形式化特征.这一特征使其成为一种经典的数学方法,并随着科学技术的数学化趋势,超越数学范畴,广泛地应用于自然PAGEPAGE6PAGEPAGE52013科学、工程技术和社会科学的一切领域.。数学模型是如何分类的?答:预报或预测、控制实际系统的基础。答:模型假设是整个建模的起点,是模型建立的基础,不同的人对同一事物的认程。.按两个基本原则的顺序进行反复的操作。表示对象间联系。联系原则构造出对象之间的联系的具体方式或细节分割的复杂性在于不存在绝对的客观分割的标准因为任何一个分割方式都带有一定的主观性,的复杂性。对其复杂性我们有必要作深入探讨和研究。答:建模的一般方法:机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通准则在某一类模型中选出一个数据拟合得最好的模型。测试分析方法也叫做系统辩识。法来确定模型的参数,也是常用的建模方法。在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定建立数答:建模的具体步骤大致如下:1、实际问题通过抽象、简化、假设,确定变量、参数;2、建立数学模型并数学、数值地求解、确定参数;3、用实际问题的实测数据等来检验该数学模型;二、多项式插值y=sinx0,π/4,π/2P2(x),sin(π/8)的近似值,并估计截断误差。2013数学建模选修课第二次作业解:
0,x1
/40.785398,x2
/21,则yy0 1
/20.707107,y1222(x
)(xx)
(x
)(xx
) (x
)(xx)1p(x)12
(xx221000 22100
)(x0
x2
y(x1
x)(x0
x2
y(x2
x)(x0
x)y21/0.405330f) )R(x) (xx)(xx)(xx) (x
)(xx
)(xx)2
0 1 2 6
0 1 2程序代码:clearall;clc;x=[0pi/4pi/2];%%计算各个插值点的x的值y=sin(x);%%sin中一定要带括号p=polyfit(x,y,2);%%构造二次插值多项式f=inline('sinx');%%sinxfprintf('运行结果为:\n\n')%%输出语句disp('构造的二次插值多项式P2(x)为:')%%输出语句f=poly2str(p,'x')%%将拟合后的多项式系数(双精度数组)转换为字符形式的函数poly2sym(p);%%将该向量转换为多项式fprintf('sin(π/8)的近似值为:\n')m=polyval(p,pi/8)%%用于对已经拟合后的多项式系数,%%当给出某个点时求其函数值;计算插值多项式在pi/8处的值fprintf('sin(π/8)n=sin(pi/8)fprintf('Rn(x)为:\n')%%R=abs(n-m)运行结果:运行结果为:P2(x)f=-0.33575x^2+1.164x-2.8824e-016sin(π/8)的近似值为:m=0.4053sin(π/8)的真实值为:n=0.3827Rn(x)R=0.0226结果分析:poly2strpoly2sym转换为多项式的函数,即无法计算,经查资料后修改得到结果如上。三、数值积分8.534米,然后等距离的测得纵向高度,自左向右分别为0.914,5.060,7.772,8.717,9.083,9.144,9.083,8.992,8.687,7.376,2.073面积。2013数学建模选修课第二次作业解:程序代码:x=linspace(0,8.534,13)%08.53413y=[00.9145.0607.7728.7179.0839.1449.0838.9928.6877.3762.0730];x0=0:0.001:8.534;y1=interp1(x,y,x0);%%一维线性插值函数fprintf('梯形积分结果为:\n\n')%%输出语句x=[x,fliplr([x(1),x,x(end)])];y=[y/2,fliplr([y(1)/2,-y/2,y(end)/2])];subplot(1,2,1);plot(x,y,'-r')%,x0,y1,'-r')S=trapz(y1)*0.001%%title('用梯形积分结果图');xlabel('x');ylabel('y');y=[0.914,5.060,7.772,8.717,9.083,9.144,9.083,8.992,8.687,7.376,2.073];n=length(y)x=linspace(0,8.534,n);pp=spline(x,y);%%求样条函数表达式fprintf('辛普森积分结果为:\n\n')%%输出语句S2=quadl(@ppval,0,8.534,[],[],pp)%%高阶法数值积分%%%绘制甲板的图形subplot('position',[200,150,900,400])%%subplot('Position',[left bottom height])%figure的位置和大小,距离屏幕左边200,底部150,宽900,高400,默认单位是像素xx=[x,fliplr([x(1),x,x(end)])];%%x1翻转yy=[y/2,fliplr([y(1)/2,-y/2,y(end)/2])];%实现矩阵的左右翻转subplot(1,2,2)plot(xx,yy)title('用辛普森积分结果图xlabel('x');ylabel('y');运行结果:x=Columns1through110 0.7112 1.4223 2.1335 2.8447 3.5558 4.26704.9782 5.6893 6.4005 7.1117Columns12through7.8228 8.5340梯形积分结果为:S=54.6894n=7PAGEPAGE82013数学建模选修课第二次作业11辛普森积分结果为:S2=65.2824结果分析:知。结果是第一个的结果没有第二个结果好。四、多项式拟合对于以下实验数据x=(11.522.533.544.555.567891011)y=(44.688.49.289.59.79.861010.210.3210.3010.2410.1810.009.40)给出拟合多项式,计算x=6.5,12处的值,并绘制相应曲线图。解:程序代码:clearall;clc;x=[11.522.533.544.555.567891011];y=[44.688.49.289.59.79.861010.210.3210.3010.2410.1810.009.40];a=polyfit(x,y,5); %拟合出的五次函数的系数fprintf('运行结果为:\n\n')%%输出语句disp('构造的二次插值多项式P2(x)为:')%%输出语句f=poly2str(a,'x')%%(双精度数组poly2sym(a);%%将该向量转换为多项式fprintf('x=6.5的近似值为:\n')m=polyval(a,6.5)%%用于对已经拟合后的多项式系数,fprintf('x=12的近似值为:\n')n=polyval(a,12)%%用于对已经拟合后的多项式系数,xx=linspace(min(x),max(x)); %绘图用到的点的横坐标yy=polyval(a,xx);%拟合曲线的纵坐标%subplot(2,2,4);plot(x,y,'m.',xx,yy,'b'); %绘图,原始数据+拟合曲线xlabel('x');ylabel('y');legend('原始数据','拟合曲线'); %图示title('五次多项式拟合曲线');holdon;x=[6.512];y=[mn];plot(x,y,'gs')运行结果:92013数学建模选修课第二次作业运行结果为:P2(x)f=0.00038416x^5-0.01707x^4+0.28271x^3-2.2403x^2+8.6685x-3.1048x=6.5的近似值为:m=10.2120x=12的近似值为:n=8.458510PAGEPAGE11结果分析:x=6.5,12第二个图。五、常微分方程数值解用预估校正Euler法,求解定解问题 yy22x, x y(0)1,求出步长为1的所有点的值,并绘制图形。解:程序代码:clc;clearf=inline('y^2-2*x/y');xx=0:1:10;x=xx;x(1)=0;y(1)=1;h=1;n=10;fprintf('每个节点的结果为:\n\n')%%输出语句fori=1:1:n+1x(i+1)=x(i)+h;y(i+1)=y(i)+h*f(x(i),y(i));xx=x(i)yy=y(i)end;fprintf('最后的结果为:\n\n')%%输出语句m=y(n)plot(x,y,'-mo') %绘图,原始数据+拟合曲线2013数学建模选修课第二次作业xlabel('x');ylabel('y');title('预估校正Euler法解定解问题的曲线');运行结果:每个节点的结果为:xx=0yy=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目管理工具之约束三角形社会工作专业教学案例宝典
- 医疗垃圾科普
- 关于培训的课件
- 中班科学活动土壤
- 培训结营仪式流程
- 数学学案:课前导引数学归纳法原理
- 关于天猫供应链管理
- 西药学综合知识与技能题库及答案(1801-2000题)
- 中班综合活动夏天的朋友
- 《纳米固体材料构》课件
- 钢结构工程冬季施工方案
- 2024-2030年中国度假酒店行业未来发展趋势及投资经营策略分析报告
- 2024-2030年中国安防行业发展现状及竞争格局分析报告权威版
- ktv营销业绩提成合同模板
- 英语-重庆市2025年普通高等学校招生全国统一考试11月调研试卷(康德卷)试题和答案
- 桩基及基坑支护工程技术施工方案(三篇)
- 招聘笔试题与参考答案(某大型国企)2024年
- 安徽理工大学《岩土力学与工程》2021-2022学年第一学期期末试卷
- 有限空间应急演练专项方案
- 2024-2030年中国演艺行业发展分析及发展前景与趋势预测研究报告
- 2025年广东省高中学业水平考试春季高考数学试题(含答案解析)
评论
0/150
提交评论