下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
相似三角形的性质教学目标1.经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。2.理解并掌握相似三角形周长和对应线段的比等于相似比、面积比等于相似比的平方,并能用来解决简单的问题。教学重点与难点重点:理解并掌握相似三角形周长和对应线段的比等于相似比、面积比等于相似比的平方。难点:探索相似多边形周长和对应线段的比等于相似比、面积比等于相似比的平方。教学过程教学过程设计意图说明新课引入:1.回顾相似三角形的概念及判定方法。2.复习相似三角形和相似多边形的定义及它们对应边、对应角的性质。以旧引新,帮助学生建立新旧知识间的联系。提出问题:如果两个三角形相似,它们的周长之间什么关系?两个相似多边形呢?(学生小组讨论)↓∆ABC∽∆A1B1C1,相似比为kAB=kA1B1,BC=kB1C1,CA=kC1A1相似三角形周长的比等于相似比相似多边形周长的比等于相似比延伸问题:探究:三角形中,除了角和边外,还有哪三种主要线段:高线,角平分线,中线思考:相似三角形的相似比与对应边上高线的比有什么关系?例如:ΔABC∽ΔA1B1C1,ADBC于D,A1D1B1C1于D1求证:=KAABCDA1B1C1D1△ABD∽△A1B1D1①相似三角形对应高线的比等于相似比。同时还可以得到:②相似三角形对应角平分线的比等于相似比。③相似三角形对应中线的比等于相似比。归纳:相似三角形对应线段的比等于相似比思考2:如图27.2-11(1),∆ABC∽∆A1B1C1,相似比为k1,它们的面积比是多少?(1)(2)图27.2-11分析:如图27.2-11(1),分别作出∆ABC和∆A1B1C1的高AD和A1D1。∠ADB=∠A1D1B1=900又∠B=∠B1∆ABD∽∆A1B1D1=k12相似三角形面积比等于相似比的平方(2)如图27.2-11(2),四边形ABCD相似于四边形A1B1C1D1,相似比为k2,它们的面积比是多少?分析:k22k22相似多边形面积比等于相似比的平方应用新知:例3、如图在ΔABC和ΔDEF中,AB=2DE,AC=2DF,∠A=∠D,若ΔABC的边BC上的高为6,面积是12√5,求ΔDEF的边EF上的高和面积。图27.2-12分析:∆ABC和∆DEF中,AB=2DE,AC=2DF又∠A=∠D∆ABC∽∆DEF,相似比为∴ΔDEF的边EF上的高为6=3面积为让学生经历从特殊到一般的过程,体会有限数学归纳法的魅力,学生以小组讨论的形式开展学习有利于丰富学生的探究经验。让学生经历从“相似三角形周长的比与相似比的关系到相似三角形高线,中线,角平分线比与相似比的关系”的过程,体会它们之间的形式雷同性与认知结构雷同性。让学生再次经历从特殊到一般的过程,进一步体验有限数学归纳法的魅力。让学生了解运用“相似三角形周长的比等于相似比、面积比等于相似比的平方”的常见解题思路。运用提高:PPT上的练习P39练习题1、3让学生在练习中熟悉利用相似三角形周长的比等于相似比、面积比等于相似比的平方,解决简单的问题。课堂小结:说说你在本节课的收获。让学生及时回顾整理本节课所学的知识。布置作业:作业:1、课本P39练习22、课本P42第6题3.备选题:如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点.连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.(1)求证:△APE∽△ADQ;(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)分层次布置作业,让不同的学生在本节课中都有收获。备选题答案:(1)证∠APE=∠ADQ,∠AEP=∠AQD.注意到△APE∽△ADQ与△PDE∽△ADQ,及S△PEF=,得S△PEF==.∴当,即P是AD的中点时,S△PEF取得最大值.(3)作A关于直线BC的对称点A′,连DA′交BC于Q,则这个点Q就是使△ADQ周长最小的点,此时Q是BC的中点.设计思想:本节课主要是让学生理解并掌握相似三角形周长和对应线段的比等于相似比、面积比等于相似比的平方,通过探索相似多边形周长的比等于相似比、面积比等于相似比的平方,体验化归思想,学会应用相似三角形周长和对应线段的比等于相似比、面积比等于相似比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 克孜勒苏职业技术学院《移动应用开发A》2023-2024学年第一学期期末试卷
- 江苏联合职业技术学院《全球卫生》2023-2024学年第一学期期末试卷
- 湖南农业大学《数字视频处理》2023-2024学年第一学期期末试卷
- 湖北孝感美珈职业学院《公共部门人力资源管理实验》2023-2024学年第一学期期末试卷
- 【物理】《功率》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 高考物理总复习《电场》专项测试卷含答案
- 重庆文理学院《建筑设计二》2023-2024学年第一学期期末试卷
- 重庆工程职业技术学院《数字化设计与制造双语》2023-2024学年第一学期期末试卷
- 浙江经济职业技术学院《太极拳》2023-2024学年第一学期期末试卷
- 中国美术学院《电工与电子技术(B)》2023-2024学年第一学期期末试卷
- 一年级口算天天练(可直接打印)
- 软件无线电原理与应用第3版 课件 【ch02】软件无线电理论基础
- 国网山东电力生产技术改造原则
- 铁路运输安全现场管理
- 2023年某保险公司春节经营教材
- 刘都才-南方水稻田杂草发生动态及防控技术
- 全自动化学发光分析仪操作规程
- 深蓝的故事(全3册)
- GB/T 42461-2023信息安全技术网络安全服务成本度量指南
- 职校开学第一课班会PPT
- 央国企信创白皮书 -基于信创体系的数字化转型
评论
0/150
提交评论