版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果实数满足条件,那么的最大值为()A. B. C. D.2.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是()A.1 B.-3 C.1或 D.-3或4.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.45.已知变量,满足不等式组,则的最小值为()A. B. C. D.6.已知为等差数列,若,,则()A.1 B.2 C.3 D.67.已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是()A. B.C. D.8.已知是虚数单位,若,,则实数()A.或 B.-1或1 C.1 D.9.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10 B.9 C.8 D.710.曲线上任意一点处的切线斜率的最小值为()A.3 B.2 C. D.111.已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是()A. B. C.2 D.312.已知复数满足,则的值为()A. B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知实数满约束条件,则的最大值为___________.14.已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为__________.15.将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是___.16.若直线与直线交于点,则长度的最大值为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-2:矩阵与变换(本小题满分10分)已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.18.(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米.开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作.设.(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值.19.(12分)“绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习.甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为“选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望20.(12分)已知,,,,证明:(1);(2).21.(12分)已知函数,.(1)当时,判断是否是函数的极值点,并说明理由;(2)当时,不等式恒成立,求整数的最小值.22.(10分)如图,在四棱锥中,底面是边长为2的菱形,,.(1)证明:平面平面ABCD;(2)设H在AC上,,若,求PH与平面PBC所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
解:当直线过点时,最大,故选B2、C【解析】
化简复数为、的形式,可以确定对应的点位于的象限.【详解】解:复数故复数对应的坐标为位于第三象限故选:.【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.3、D【解析】
由题得,解方程即得k的值.【详解】由题得,解方程即得k=-3或.故答案为:D【点睛】(1)本题主要考查点到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2)点到直线的距离.4、D【解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题5、B【解析】
先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.6、B【解析】
利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出.【详解】∵{an}为等差数列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故选:B.【点睛】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.7、B【解析】
求出导函数,确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围.【详解】,当时,,单调递增,当时,,单调递减,∴在上只有一个极大值也是最大值,显然时,,时,,因此要使函数有两个零点,则,∴.故选:B.【点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围.8、B【解析】
由题意得,,然后求解即可【详解】∵,∴.又∵,∴,∴.【点睛】本题考查复数的运算,属于基础题9、B【解析】
根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知所以因为为线段长度,都大于0,由基本不等式可知,此时所以选B【点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.10、A【解析】
根据题意,求导后结合基本不等式,即可求出切线斜率,即可得出答案.【详解】解:由于,根据导数的几何意义得:,即切线斜率,当且仅当等号成立,所以上任意一点处的切线斜率的最小值为3.故选:A.【点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.11、A【解析】
由点到直线距离公式建立的等式,变形后可求得离心率.【详解】由题意,一条渐近线方程为,即,∴,,即,,.故选:A.【点睛】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础.12、C【解析】
由复数的除法运算整理已知求得复数z,进而求得其模.【详解】因为,所以故选:C【点睛】本题考查复数的除法运算与求复数的模,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】
画出可行域和目标函数,根据平移计算得到答案.【详解】根据约束条件,画出可行域,图中阴影部分为可行域.又目标函数表示直线在轴上的截距,由图可知当经过点时截距最大,故的最大值为8.故答案为:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.14、【解析】
连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.【详解】如图,连接,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,当最小时,最小,设点,则,所以当时,,则,当点的横坐标时,,此时,因为随着的增大而增大,所以的取值范围为.故答案为:.【点睛】本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.15、【解析】
先求出基本事件总数6×6=36,再由列举法求出“点数之和等于6”包含的基本事件的个数,由此能求出“点数之和等于6”的概率.【详解】基本事件总数6×6=36,点数之和是6包括共5种情况,则所求概率是.故答案为【点睛】本题考查古典概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.16、【解析】
根据题意可知,直线与直线分别过定点,且这两条直线互相垂直,由此可知,其交点在以为直径的圆上,结合图形求出线段的最大值即可.【详解】由题可知,直线可化为,所以其过定点,直线可化为,所以其过定点,且满足,所以直线与直线互相垂直,其交点在以为直径的圆上,作图如下:结合图形可知,线段的最大值为,因为为线段的中点,所以由中点坐标公式可得,所以线段的最大值为.故答案为:【点睛】本题考查过交点的直线系方程、动点的轨迹问题及点与圆的位置关系;考查数形结合思想和运算求解能力;根据圆的定义得到交点在以为直径的圆上是求解本题的关键;属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、解:设特征向量为α=对应的特征值为λ,则=λ,即因为k≠0,所以a=2.5分因为,所以A=,即=,所以2+k=3,解得k=2.综上,a=2,k=2.20分【解析】试题分析:由特征向量求矩阵A,由逆矩阵求k考点:特征向量,逆矩阵点评:本题主要考查了二阶矩阵,以及特征值与特征向量的计算,考查逆矩阵.18、(1),;(2)米.【解析】
(1)过点作于点再在中利用正弦定理求解,再根据求解,进而求得.再根据确定的范围即可.(2)根据(1)有,再设,求导分析函数的单调性与最值即可.【详解】解:过点作于点则,在中,,,由正弦定理得:,,,,,因为,化简得,令,,且,因为,故令即,记,当时,单调递增;当时,单调递减,又,当时,取最大值,此时,的最大值为米.【点睛】本题主要考查了三角函数在实际中的应用,需要根据题意建立角度与长度间的关系,进而求导分析函数的单调性,根据三角函数值求解对应的最值即可.属于难题.19、(Ⅰ);(Ⅱ)分布列见解析,.【解析】
(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由题得可能取值为,再求x的分布列和期望.【详解】(Ⅰ)(Ⅱ)可能取值为,,,,,的分布列为0123.【点睛】本题主要考查古典概型的计算,考查随机变量的分布列和期望的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)证明见解析(2)证明见解析【解析】
(1)先由基本不等式可得,而,即得证;(2)首先推导出,再利用,展开即可得证.【详解】证明:(1),,,(当且仅当时取等号).(2),,,,,,,.【点睛】本题考查不等式的证明,考查基本不等式的运用,考查逻辑推理能力,属于中档题.21、(1)是函数的极大值点,理由详见解析;(2)1.【解析】
(1)将直接代入,对求导得,由于函数单调性不好判断,故而构造函数,继续求导,判断导函数在左右两边的正负情况,最后得出,是函数的极大值点;(2)利用题目已有条件得,再证明时,不等式恒成立,即证,从而可知整数的最小值为1.【详解】解:(1)当时,.令,则当时,.即在内为减函数,且∴当时,;当时,.∴在内是增函数,在内是减函数.综上,是函数的极大值点.(2)由题意,得,即.现证明当时,不等式成立,即.即证令则∴当时,;当时,.∴在内单调递增,在内单调递减,的最大值为.∴当时,.即当时,不等式成立.综上,整数的最小值为.【点睛】本题考查学生利用导数处理函数的极值,最值,判断函数的单调性,由此来求解函数中的参数的取值范围,对学生要求较高,然后需要学生能构造新函数处理恒成立问题,为难题22、(1)见解析;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 闽教版英语六年级下册教案
- 国际贸易中的税收优惠政策
- 高一化学教案:第三单元人工合成有机化合物
- 2024届浙江省杭州市八校联盟高考仿真卷化学试卷含解析
- 2024高中物理第三章相互作用1重力基本相互作用课后作业含解析新人教版必修1
- 2024高中语文第1单元论语蚜第5课不义而富且贵于我如浮云练习含解析新人教版选修先秦诸子蚜
- 2024高中语文第五课言之有“理”第4节说“一”不“二”-避免歧义训练含解析新人教版选修语言文字应用
- 2024高考化学一轮复习专练38速率平衡图像含解析新人教版
- 2024高考历史一轮复习方案专题十四古今中国的科技和文艺专题整合备考提能教学案+练习人民版
- 小学2024-2025学年第二学期劳动教育教研计划
- 信访邮寄材料地址【四篇】
- 商品拍摄与素材编辑-课程标准
- 银行 重点客户管理办法模版
- 中等职业学校班主任能力比赛幼儿保育专业班级建设方案
- 你来比划我来猜词语(超搞笑版)
- 施工总平面布置图及说明及施工现场平面布置图
- GB/T 42270-2022多孔疏水膜的疏水性能测试方法
- 2023年高中生学校打牌检讨书(五篇)
- 滕王阁序带拼音全文译文
- 沙盘软件系统操作手册
- GB/T 8429-1998纺织品色牢度试验耐气候色牢度:室外曝晒
评论
0/150
提交评论