吉林省公主岭第五中学2023年高考数学四模试卷含解析_第1页
吉林省公主岭第五中学2023年高考数学四模试卷含解析_第2页
吉林省公主岭第五中学2023年高考数学四模试卷含解析_第3页
吉林省公主岭第五中学2023年高考数学四模试卷含解析_第4页
吉林省公主岭第五中学2023年高考数学四模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,则的极大值点为()A. B. C. D.2.已知满足,则的取值范围为()A. B. C. D.3.在等差数列中,,,若(),则数列的最大值是()A. B.C.1 D.34.已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,,分组,绘成频率分布直方图如下:嘉宾评分嘉宾评分的平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是()A. B. C. D.6.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为()A.1 B.2 C.3 D.47.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则()A.1194 B.1695 C.311 D.10958.已知实数,,函数在上单调递增,则实数的取值范围是()A. B. C. D.9.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.110.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为()A.2 B.3 C.5 D.811.已知满足,则()A. B. C. D.12.设向量,满足,,,则的取值范围是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数恒成立,则实数的取值范围是_____.14.实数,满足约束条件,则的最大值为__________.15.若的展开式中所有项的系数之和为,则______,含项的系数是______(用数字作答).16.“直线l1:与直线l2:平行”是“a=2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.18.(12分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和19.(12分)如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)求二面角的正切值.20.(12分)已知函数,为实数,且.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).21.(12分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.22.(10分)设函数.(1)若,求函数的值域;(2)设为的三个内角,若,求的值;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可.【详解】因为,故可得,令,因为,故可得或,则在区间单调递增,在单调递减,在单调递增,故的极大值点为.故选:A.【点睛】本题考查利用导数求函数的极值点,属基础题.2、C【解析】

设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.3、D【解析】

在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时,取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.4、C【解析】

根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可.【详解】点不在直线、上,若直线、互相平行,则过点可以作无数个平面,使得直线、都与这些平面平行,即必要性成立,若过点可以作无数个平面,使得直线、都与这些平面平行,则直线、互相平行成立,反证法证明如下:若直线、互相不平行,则,异面或相交,则过点只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立则“过点可以作无数个平面,使得直线、都与这些平面平行”是“直线、互相平行”的充要条件,故选:.【点睛】本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键.5、C【解析】

计算出、,进而可得出结论.【详解】由表格中的数据可知,,由频率分布直方图可知,,则,由于场外有数万名观众,所以,.故选:B.【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.6、B【解析】

设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断是的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线与所成角判断④的正误.【详解】解:不妨设棱长为:2,对于①连结,则,即与不垂直,又,①不正确;对于②,连结,,在中,,而,是的中点,所以,②正确;对于③由②可知,在中,,连结,易知,而在中,,,即,又,面,平面平面,③正确;以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;,,,,,;,;异面直线与所成角为,,故.④不正确.故选:.【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力.7、D【解析】

确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和.【详解】时,,所以数列的前35项和中,有三项3,9,27,有32项,所以.故选:D.【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础.解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的.8、D【解析】

根据题意,对于函数分2段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,

当,若为增函数,则①,

当,若为增函数,必有在上恒成立,

变形可得:,

又由,可得在上单调递减,则,

若在上恒成立,则有②,

若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,③

联立①②③可得:.

故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.9、B【解析】

过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.10、D【解析】

画出函数的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.【详解】解:函数,如图所示当时,,由于关于的不等式恰有1个整数解因此其整数解为3,又∴,,则当时,,则不满足题意;当时,当时,,没有整数解当时,,至少有两个整数解综上,实数的最大值为故选:D【点睛】本题主要考查了根据函数零点的个数求参数范围,属于较难题.11、A【解析】

利用两角和与差的余弦公式展开计算可得结果.【详解】,.故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.12、B【解析】

由模长公式求解即可.【详解】,当时取等号,所以本题答案为B.【点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

若函数恒成立,即,求导得,在三种情况下,分别讨论函数单调性,求出每种情况时的,解关于的不等式,再取并集,即得。【详解】由题意得,只要即可,,当时,令解得,令,解得,单调递减,令,解得,单调递增,故在时,有最小值,,若恒成立,则,解得;当时,恒成立;当时,,单调递增,,不合题意,舍去.综上,实数的取值范围是.故答案为:【点睛】本题考查恒成立条件下,求参数的取值范围,是常考题型。14、10【解析】

画出可行域,根据目标函数截距可求.【详解】解:作出可行域如下:由得,平移直线,当经过点时,截距最小,最大解得的最大值为10故答案为:10【点睛】考查可行域的画法及目标函数最大值的求法,基础题.15、【解析】的展开式中所有项的系数之和为,,,项的系数是,故答案为(1),(2).16、必要不充分【解析】

先求解直线l1与直线l2平行的等价条件,然后进行判断.【详解】“直线l1:与直线l2:平行”等价于a=±2,故“直线l1:与直线l2:平行”是“a=2”的必要不充分条件.故答案为:必要不充分.【点睛】本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在;详见解析【解析】

(1)由椭圆的性质得,解得后可得,从而得椭圆方程;(2)设,当直线斜率存在时,设为,代入椭圆方程,整理后应用韦达定理得,代入=0由恒成立问题可求得.验证斜率不存在时也适合即得.【详解】解:(1)由题易知解得,所以椭圆方程为(2)设当直线斜率存在时,设为与椭圆方程联立得,显然所以因为化简解得即所以此时存在定点满足题意当直线斜率不存在时,显然也满足综上所述,存在定点,使成立【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法.设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法.18、(1);(2)【解析】

(1)由化为,利用数列的通项公式和前n项和的关系,得到是首项为,公差为的等差数列求解.(2)由(1)得到,再利用错位相减法求解.【详解】(1)可以化为,,,,又时,数列从开始成等差数列,,代入得是首项为,公差为的等差数列,,.(2)由(1)得,,,两式相减得,,.【点睛】本题主要考查数列的通项公式和前n项和的关系和错位相减法求和,还考查了运算求解的能力,属于中档题.19、(1)见证明;(2)【解析】

(1)取PD中点G,可证EFGA是平行四边形,从而,得证线面平行;(2)取AD中点O,连结PO,可得面,连交于,可证是二面角的平面角,再在中求解即得.【详解】(1)证明:取PD中点G,连结为的中位线,且,又且,且,∴EFGA是平行四边形,则,又面,面,面;(2)解:取AD中点O,连结PO,∵面面,为正三角形,面,且,连交于,可得,,则,即.连,又,可得平面,则,即是二面角的平面角,在中,∴,即二面角的正切值为.【点睛】本题考查线面平行证明,考查求二面角.求二面角的步骤是一作二证三计算.即先作出二面角的平面角,然后证明此角是要求的二面角的平面角,最后在三角形中计算.20、(Ⅰ)极大值0,没有极小值;函数的递增区间,递减区间,(Ⅱ)见解析【解析】

(Ⅰ)由,令,得增区间为,令,得减区间为,所以有极大值,无极小值;(Ⅱ)由,分,和三种情况,考虑函数在区间上的值域,即可得到本题答案.【详解】当时,,,当时,,函数单调递增,当时,,函数单调递减,故当时,函数取得极大值,没有极小值;函数的增区间为,减区间为,,当时,,在上单调递增,即函数的值域为;当时,,在上单调递减,即函数的值域为;当时,易得时,,在上单调递增,时,,在上单调递减,故当时,函数取得最大值,最小值为,中最小的,当时,,最小值;当,,最小值;综上,当时,函数的值域为,当时,函数的值域,当时,函数的值域为,当时,函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论