版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
333`1``3``3``21`2`1132例5:求两轴线斜交圆柱的相贯线Y3`4`5`1``4``3``3``21`2`1YY453313245例5:求两轴线斜交圆柱的相贯线45Y4`5`4``2`YY45例5:求两轴线斜交圆柱的相贯线分析:
两圆柱交叉相交其相贯线为空间曲线,其水平投影及侧面投影与圆柱的投影重合为一段圆弧。故只求作相贯线的正面投影。由于两圆柱的水平投影左右对称,侧面投影上下对称。故相贯线的正面投影上下、左右对称。作图:1.求特殊点垂直圆柱的水平投影中标注特殊点。先确定转向轮廓线上的点。点2,6为最左最右点。点1,7为最前点,4点为最后点。点3,5为最高点。2.求一般点
利用辅助正平面R,与圆柱面的截交线正面投影为两条平行的直线,该两截交线的交点就是相贯线上的点。3.判别可见性,并将各点的同面投影依次光滑地连接起来,即得相贯线。4.补全外形线,完成作图返回15437261``(6``)2``3``(7``)(5``)4``RHRWYYbaa``例6:求两轴线交叉圆柱的相贯线返回1``(6``)2``3``(7``)(5``)4``1234665154723RHRWYYbaa``形体的前面形体的后面1`7`2`6`3`5`4`a`b`AB例6:求两轴线交叉圆柱的相贯线返回123465形体的前面形体的后面例6:求两轴线交叉圆柱的相贯线1``(6``)2``3``(7``)(5``)4``6154723RHYbaa``1`7`2`6`3`5`4`a`b`3`2`例7:求两轴线交叉圆柱圆锥的相贯线a``b``d``c``3``2``1``m``分析:圆柱与圆锥交叉相交其相贯线为空间曲线,其侧面投影与圆柱的投影重合为一段圆弧。故只求作相贯线的正面投影,水平投影。由于两形体的水平投影,正面投影左右对称,故相贯线的正面投影水平投影左右对称。作图:1.求特殊点垂直圆柱的侧面投影中标注特殊点。先确定转向轮廓线上的点。点1,3为最高最低点,点A为最前点,2点为最后点,点D为最左点。转向轮廓线上的点C,B,M。2.求一般点
利用辅助水平面R,与圆柱面的截交线水平投影为两条平行的直线,与圆锥面的截交线水平投影为圆。该两截交线的交点就是相贯线上的点。3.判别可见性,并将各点的同面投影依次光滑地连接起来,即得相贯线。4.补全外形线,完成作图例7:求两轴线交叉圆柱圆锥的相贯线a``b``d``c``3``2``1``m``d`1`123abcdAMB1C23Da`b`c`RVRV2`RV3`RWmm`作图:1.求特殊点
例7:求两轴线交叉圆柱圆锥的相贯线Rw123abcdma``b``d``c``3``2``1``m``d`1`a`b`c`2`3`m`f``e``2.求一般点E,F例7:求两轴线交叉圆柱圆锥的相贯线RW123abcdma``b``d``c``3``2``1``m``d`1`a`b`c`2`3`m`EFYYefe`f`f``e``2.求一般点E,F例7:求两轴线交叉圆柱圆锥的相贯线123abcdmd`1`a`b`c`2`3`m`efe`f`a``b``d``c``3``2``1``m``f``e``3.判别可见性4.补全外形线,完成作图1`c`m`例7:求两轴线交叉圆柱圆锥的相贯线讨论:圆柱变成孔返回局部放大图例8:求两轴线交叉圆柱圆锥的相贯线123456891071`1``2``2`3`4`6``7``8``9``10``5``3``4``5`6`7`8`9`10`返回例8:求两轴线交叉圆柱圆锥的相贯线例8:求两轴线交叉圆柱圆锥的相贯线返回局部放大图例9:求圆柱与半圆球的相贯线abcd1243fe分析:圆柱与半球相交其相贯线为空间曲线,圆柱的轴线垂直水平面,其相贯线的水平投影与圆柱的投影重合为圆。故只求作相贯线的正面投影,侧面投影。由于两圆柱的水平积聚投影左右,前后不对称。故相贯线的正面投影,侧面投影为完整的封闭的相贯线的投影。作图:1.求特殊点
垂直圆柱的水平投影中标注特殊点。先确定转向轮廓线上的点。点A,B为最左最右点。点C,D为最前后点,1,2点为半球前后的轮廓线上点。3,4点为半球左右的轮廓线上点。E,F最高最低点。点5,6为一般点。2.求一般点
利用辅助正平面R,与圆柱面的截交线正面投影为两条平行的直线,与圆球面的截交线正面投影为圆,该两截交线的交点就是相贯线上的点。3.判别可见性,并将各点的同面投影依次光滑地连接起来,即得相贯线。4.补全外形线,完成作图56RH例9:求圆柱与半圆球的相贯线a`b`a``b``c``d``作图:1.求特殊点:先作圆柱上的外形轮廓线上的点A,B,C,D。利用辅助正平面R,与圆柱面的截交线正面投影为两条平行的直线,与圆球面的截交线正面投影为圆,该两截交线的交点就是相贯线上的点。123febaQHc4UHdd`c`BADC例9:求圆柱与半圆球的相贯线a`abcdb`d`a``b``c``d``1243f1`2`3`4`e`1``2``4``3``f``e``作图:1.求特殊点再作圆球上的外形轮廓线上的点1,2,3,4。最高点E最低点F。1243YYYYKHeMVc`f`EF例9:求圆柱与半圆球的相贯线a`abcdb`d`c`a``b``c``d``1243fe1`2`3`4`f`e`1``2``4``3``f``e``KH565`6`2.求一般点
利用辅助正平面R,与圆柱面的截交线正面投影为两条平行的直线,与圆球面的截交线正面投影为圆,该两截交线的交点5,6就是相贯线上的点。KH6``5``例9:求圆柱与半圆球的相贯线a`abcdb`d`c`a``b``c``d``1243fe2`3`4`f`e`1``2``4``3``f``e``KH565`6`KH6``5``3.判别可见性,并将各点的同面投影依次光滑地连接起来,即得相贯线。4.补全外形线,完成作图a`1`1`f`5`例10:求圆台与圆球的相贯线分析:圆锥台与部分球相交其相贯线为空间曲线,圆锥台的轴线垂直水平面。圆锥台与球的三面投影,没有积聚性。故需求作相贯线的正面投影,水平投影,侧面投影。由于两圆锥的水平投影前后对称。故相贯线的正面投影为重合的前半支,水平投影左右不对称。侧面投影为完整的封闭的相贯线的投影。作图:1.求特殊点先确定转向轮廓线上的点。垂直圆台的轴线位于部分圆球的前后对称面上,故最左点(最低点)1,最右点(最高点)3的正面投影可直接找到。最前点2最后点4在圆台最前和最后素线。131`1`3`3``1324作图:1.求特殊点先确定转向轮廓线上的点。最前点2最后点4在圆台最前和最后素线。1`1``13RV分析:辅助平面过锥顶故与圆锥的截交线为两直线,辅助平面为侧平面故与球的截交线为部分圆,直线与圆的交点即为最前点2最后点4。24例10:求圆锥与圆球的相贯线3`3`作图:1.求特殊点先确定转向轮廓线上的点。最前点2最后点4在圆台最前和最后素线。1`1``1423RV例10:求圆锥与圆球的相贯线3`(4`)2`2``3`R4``24例10:求圆锥与圆球的相贯线作图:2.求一般点
利用辅助正平面Q,K,与圆球面的截交线水平投影为圆,与圆台面的截交线水平投影为圆,该两截交线圆的交点就是相贯线上的点A,B,C,D。3.判别可见性,并将各点的同面投影依次光滑地连接起来,即得相贯线。4.补全外形线,完成作图1`3`(4`)2`1``QVQw1ba423b``a``4``2``3``KV(b`)a`cc`(d`)Kwd``c``dQAB例10:求圆锥与圆球的相贯线作图:3.判别可见性,并将各点的同面投影依次光滑地连接起来,即得相贯线。4.补全外形线,完成作图1`3`(4`)2`1``1ba423b``a``4``2``(b`)a`cc`(d`)d3``d``c``P3VP1VP2V返回例11:求圆锥与圆球的相贯线4`3`2`331`14422§7-3
立体表面交线的分析两曲面立体相交相贯线的形状,取决于曲面立体的表面的几何性质,尺寸大小和相对位置。
1相贯线的特殊情况两回转立体相交,相贯线一般为空间曲线,但在特殊情况也可能是平面曲线或直线。相贯线的特殊情况一返回相贯线的特殊情况二返回相贯线的特殊情况二蒙日定理:如果两个二次曲面(如圆柱面圆锥面球面等)共切于第三个二次曲面,则它们的交线为两条二次平面曲线。等径圆柱的相贯线的分析:等径圆柱与圆锥的相贯线的分析:2影响相贯线形状的因素立体的表面的几何性质,尺寸大小和相对位置。轴线正交时表面性质相同而尺寸不同对相贯线的形状的影响
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国消防通风低噪声柜式离心风机行业投资前景及策略咨询研究报告
- 2024至2030年中国防盗器五金配件行业投资前景及策略咨询研究报告
- 2024年磷化镓晶体(GAP)项目成效分析报告
- 2024至2030年中国蜂房式线绕过滤芯行业投资前景及策略咨询研究报告
- 2024至2030年中国艳古铜色电解着色剂行业投资前景及策略咨询研究报告
- 2024至2030年中国精氨酸数据监测研究报告
- 企业三级安全教育培训
- 2024至2030年中国焦性没食子酸数据监测研究报告
- 2024至2030年中国方型针阀滴量器数据监测研究报告
- 2024至2030年中国对焊式管座数据监测研究报告
- 上海市交大附中附属嘉定德富中学2024-2025学年九年级上学期期中考数学卷
- 人工智能智能制造设备维护与管理手册
- 2024年大学生就业创业知识竞赛题库及答案(共350题)
- 基于SICAS模型的区域农产品品牌直播营销策略研究
- 《算法设计与分析基础》(Python语言描述) 课件 第6章分支限界法
- 2024年福建省残疾人岗位精英职业技能竞赛(美甲师)参考试题库(含答案)
- 2024秋期国家开放大学专科《液压与气压传动》一平台在线形考(形考任务+实验报告)试题及答案
- 田径训练论文开题报告
- 个人健康管理平台使用操作教程
- 新版《铁道概论》考试复习试题库(含答案)
- DB11T 2315-2024消防安全标识及管理规范
评论
0/150
提交评论