版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
相似三角形的判定问题1:我们已经有哪些判别两三角形相似的方法?(1)相似三角形的定义(2)两角对应相等的两个三角形相似。一、复习提问燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,有
S△AOB∶S△AOC=BD∶CD
S△AOB∶S△COB=AE∶CE
S△BOC∶S△AOC=BF∶AF
因此图类似燕尾而得名。是五大模型之一,是一个关于平面三角形的定理,俗称燕尾定理。
证法1:下面的是第一种方法:利用分比性质(若a÷b=c÷d,则(a-b)÷b=(c-d)÷d,b≠0,d≠0,)注:∵(a-b)÷b=a÷b-b÷b=a÷b-1,(c-d)÷d=c÷d-d÷d=c÷d-1,a/b=c/d∴(a-b)÷b=(c-d)÷d∵△ABD与△ACD同高∴S△ABD:S△ACD=BD:CD同理,S△OBD:S△OCD=BD:CD利用分比性质,得S△ABD-S△OBD:S△ACD-S△OCD=BD:CD即S△AOB:S△AOC=BD:CD命题得证。(由此可得:若X:Y=a∶b,X1∶Y1=a∶b;则(X±X1)∶(Y±Y1)=a∶b.其中Y、Y1≠0,Y≠Y1且Y-≠Y1)证法2:相似三角形法概要:利用共边三角形性质作共有边上的高,由相似比相等得证.类比的方法应在经验科学中占很高的地位,而且科学家也曾按照这种推论方法获得很重要的结果。
——黑格尔(德国古典唯心主义辩证法哲学的集大成者,彻底的客观唯心主义者)“难”也是如此,面对悬崖峭壁,一百年也看不出一条缝来,但用斧凿,能进一寸进一寸,能得一尺得一尺,不断积累,飞跃必来,突破随之。
——华罗庚(世界著名数学家,是中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者)
10、思索,连续不断的思索,以待天曙,渐渐地见得光明。如果说我对世界有些贡献的话,那不是由于别的,却只是由于我的辛勤耐久的思索所致。
——牛顿(英国数学家、天文学家和物理学家)
11、钻研数学——这是一种需要全部灵活性和刻苦耐劳的智力体操。
——维纳(美国数学家,控制论的创始人)
二、探索新知
观察图,如果有一点E在边AC上,那么点E应该在什么位置才能使△ADE与△ABC相似呢?图中两个三角形的一组对应边AD与AB的长度的比值为.将点E由点A开始=__________.在AC上移动,可以发现当AE=________AC时,△ADE与△ABC相似.此时如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似吗?E知识探索
活动一:利用刻度尺和量角器画两个三角形,使它们的两条对应边成比例,并且夹角相等.量一量第三条对应边的长,计算它们的比与前两条对应边的比是否相等.另两个角是否对应相等?你能得出什么结论?ABCDEF
如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(
简单的说成:两边对应成比例且夹角相等的两个三角形相似
)三角形相似的判定方法2:两边对应成比例且夹角相等的两个三角形相似ABC在△ABC与△DEF中∵∠B=∠E,DEF
∴
△ABC∽△DEF(两边对应成比例且夹角相等的两个三角形相似)
上述判定方法中的“角”一定只能是两对应边的夹角吗?我爱思考想一想:在上述问题中如果这个角是这两条边中其中一条边的对角呢,两个三角形还一定相似吗?50°)4AB21.650°)EDF
两边对应成比例且一边的对角对应相等的两三角形不一定相似例题解析例3 证明图24.3.7中△AEB和△FEC相似.证明 ∵,∴∴△AEB∽△FEC(如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似).
∵∠AEB=∠FEC,依据下列各组条件,证明△ABC和△A′B′C′相似∠A=40°,AB=8,AC=15,∠A′=40°,A′B′=16,A′C′=30.你能做到吗?证明: ∴△ACD∽△ABC(两边对应成比例且夹角相等的两个三角形相似).
2、如图,D在△ABC的AB边上AD=1,BD=2,AC=.问:△ACD与△ABC相似吗?为什么?ABCD答:△ACD∽△ABC∴∠A=∠A∵AD=1
AC=12
1、已知,如图所示,D是△ABC的边AB上的一点,根据下列条件,可证明△ABC∽△ACD的是()A.AC·AB=CA·CDB.BC·AD=CD·AC
C.
AC2=AB·ADD.CD2=AD·BD
大胆试一试:CBC·AD=CD·AC
AC2=AB·ADCD2=AD·BD
例1、如图,在的点,PABCD=∴(两边对应成比例且夹角相等的两个三角形相似).4、下面图中的两个三角形是否相似?请说说你的理由:CA455EFB4如果两个三角形的三条边对应成比例,那么这两个三角形相似吗?感觉上应该是能“相似”了.
活动二:在图24.3.8的方格上任画一个三角形,再画出第二个三角形,使它的三边长都是原来三角形的三边长的相同倍数.画完之后,用量角器比较两个三角形的对应角,你发现了什么结论?大家的结论都一样吗?我们可以发现这两个三角形相似.如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形似.(简单的说成:三边对应成比例的两个三角形相似)CABC'A'B'三边对应成比例的两个三角形相似三角形相似的判定方法3:如图,在△ABC与△A′B′C′中,
∴
△ABC∽△A′B′C′(三边对应成比例的两个三角形相似.)∵例4
在△ABC和△A′B′C′中,已知:AB=6cm,BC=8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′=30cm.试证明△ABC与△A′B′C′相似.证明 ∵,∴∴△ABC∽△A′B′C′(如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似).
依据下列各组条件,证明△ABC和△A′B′C′相似检查一下自学效果AB=10cm,BC=8cm,AC=16cm,A′B′=16cm,B′C′=25.6cm,A′C′=12.8cm如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。两角对应相等,两三角形相似。三角形相似判定定理之1A1B1C1ABC△ABC∽△A1B1C1.那么即:如果∠A=∠A1,∠B=∠B1.
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。两边对应成比例,且夹角相等,两三角形相似。三角形相似判定定理之二A1B1C1ABC△ABC∽△A1B1C1.即:如果∠B=∠B1.那么如果两个三角形的三组对应边的比相等,那么这两个三角形相似。简称:三边对应成比例,两三角形相似。三角形相似判定定理之3△ABC∽△A1B1C1.即:如果那么A1B1C1ABC再见
如图,AB是斜靠在墙上的长梯,梯脚B距墙1.6米,梯子上一点D距离墙1.4米,BD长为0.55米,则梯子的长为——————ABCDE生活中的三角形BCAA'B'C'第一种情况∴ΔABC∽ΔA'B'C'顶角相等BCAA'B'C'第二种情况∴ΔABC∽ΔA'B'C'底角相等第三种情况ABCA'B'C'两三角形不相似顶角与底角相等3.已知:如图,P为△A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年安徽省马鞍山和县事业单位招聘21人历年高频重点提升(共500题)附带答案详解
- 2025下半年四川省安岳县事业单位招聘108人历年高频重点提升(共500题)附带答案详解
- 2025上海地铁第一运营限公司维护保障检修工(储备)招聘50人高频重点提升(共500题)附带答案详解
- 2025上半年江苏省苏州昆山市周庄镇招聘24人历年高频重点提升(共500题)附带答案详解
- 2025上半年四川自贡市属事业单位考试聘用工作人员121人高频重点提升(共500题)附带答案详解
- 2025上半年四川省文学艺术界联合会直属事业单位招聘拟聘用人员历年高频重点提升(共500题)附带答案详解
- 2025上半年内蒙古自治区科技信息传播服务保障中心招聘工作人员高频重点提升(共500题)附带答案详解
- 2025《前进论坛》杂志社公开招聘应届高校毕业生1人高频重点提升(共500题)附带答案详解
- 体育公园绿化改造施工合同
- 医疗器械品牌授权政策
- 服装类供货服务方案
- 基坑土方施工方案评审意见
- 大连市小升初手册
- 会阴阻滞麻醉完整版PPT课件
- 四辊不可逆铝板冷轧机的设计
- 工地三相五线制电路布线详解20160318
- 新《安全生产法》解读PPT课件
- 人才梯队-继任计划-建设方案(珍贵)
- WLANAP日常操作维护规范
- 《健身气功》(选修)教学大纲
- GE公司燃气轮机组支持轴承结构及性能分析
评论
0/150
提交评论