版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
由递推公式求通项的7种方法及破解数列中的3类探索性问题一、由递推公式求通项的7种方法
1、an+1=an+f(n)型把原递推公式转化为an+1-a
n=f(n),再利用累加法(逐差相加法)求解,即an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=a1+f(1)+f(2)+f(3)+…+f(n-1).
[例3]
已知数列{an}中,a1=1,an+1=2an+3,求an.
[解]设递推公式an+1=2an+3可以转化为an+1-t=2(an-t),即an+1=2an-t,则t=-3.故递推公式为an+1+3=2(an+3).
5、an+1=pan+an+b(p≠1,p≠0,a≠0)型这种类型一般利用待定系数法构造等比数列,即令an+1+x(n+1)+y=p(an+xn+y),与已知递推式比较,解出x,y,从而转化为{an+xn+y}是公比为p的等比数列.
[例5]
设数列{an}满足a1=4,an=3an-1+2n-1(n≥2),求an.
6、an+1=pa(p>0,an>0)型这种类型一般是等式两边取对数后转化为an+1=pan+q型数列,再利用待定系数法求解.二、破解数列中的3类探索性问题
1.条件探索性问题
此类问题的基本特征是:针对一个结论,条件未知需探求,或条件增删需确定,或条件正误需判定,解决此类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件,在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意.
[例1]已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+2+Sn=2Sn+1+1(n∈N*);数列{bn}中,b1=a1,bn+1=4bn+6(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)设cn=bn+2+(-1)n-1λ·2an(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立.
[思路点拨]
处理第(2)问中的cn+1>cn恒成立问题,可通过构造函数将问题转化为函数的最值问题,再来研究所构造的函数的最值.
[解]
(1)由已知得Sn+2-Sn+1-(Sn+1-Sn)=1,所以an+2-an+1=1(n≥1).又a2-a1=1,所以数列{an}是以a1=2为首项,1为公差的等差数列.所以an=n+1.
因为bn+1=4bn+6,即bn+1+2=4(bn+2),又b1+2=a1+2=4,所以数列{b2+2}是以4为公比,4为首项的等比数列.所以bn=4n-2.
(2)因为an=n+1,bn=4n-2,所以cn=4n+(-1)n-1λ·2n+1.要使cn+1>cn成立,需cn+1-cn=4n+1-4n+(-1)nλ·2n+2-(-1)n-1λ·2n+1>0恒成立,化简得3·4n-3λ(-1)n-12n+1>0恒成立,即(-1)n-1λ<2n-1恒成立,①当n为奇数时,即λ<2n-1恒成立,当且仅当n=1时,2n-1有最小值1,所以λ<1;②当n为偶数时,即λ>-2n-1恒成立,当且仅当n=2时,-2n-1有最大值-2,所以λ>-2,即-2<λ<1.
又λ为非零整数,则λ=-1.
综上所述,存在λ=-1,使得对任意n∈N*,都有cn+1>cn成立.
[点评]对于数列问题,一般要先求出数列的通项,不是等差数列和等比数列的要转化为等差数列或等比数列.遇到Sn要注意利用Sn与an的关系将其转化为an,再研究其具体性质.遇到(-1)n型的问题要注意分n为奇数与偶数两种情况进行讨论,本题易忘掉对n的奇偶性的讨论而致误.
2.结论探索性问题此类问题的基本特征是:有条件而无结论或结论的正确与否需要确定.解决此类问题的策略是:先探索结论而后去论证结论,在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论.
[思路点拨]处理第(2)问中的是否存在问题,可先假设存在正整数m,n,把m,n转化为一个变量求出这个变量的范围,根据正整数求其值,若在所求范围内能够得到适合题目的值,则存在,否则就不存在.第(3)问中Tn与9的大小比较可以通过构造函数,根据函数的性质比较Tn与9的大小.`[解]
(1)因为a=2a+anan+1,即(an+an+1)(2an-an+1)=0.又an>0,所以2an-an+1=0,即2an=an+1.所以数列{an}是公比为2的等比数列.由a2+a4=2a3+4,得2a1+8a1=8a1+4,解得a1=2.故数列{an}的通项公式为an=2n(n∈N*).
[点评]对于结论探索性问题,需要先得出一个结论,再进行证明.注意含有两个变量的问题,变量归一是常用的解题思想,一般把其中的一个变量转化为另一个变量,根据题目条件,确定变量的值.遇到数列中的比较大小问题可以采用构造函数,根据函数的单调性进行证明,这是解决复杂问题常用的方法.
3.存在探索性问题此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立.解决此类问题的一般方法是:假定题中的数学对象存在或结论成立或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用.
(3)是否存在互不相等的正整数m,s,n,使m,s,n成等差数列,且am-1,as-1,an-1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.
[思路点拨]
第(1)问中an+1与an的关系以分式形式给出,可以通过取倒数处理,目的仍然是变为等差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《班组安全教育课程》课件
- 单位管理制度集粹选集【员工管理】十篇
- 单位管理制度合并选集【人力资源管理】十篇
- 七年级下《皇帝的新装》苏教版-课件
- 单位管理制度范例汇编【职员管理篇】十篇
- 《标准化装修》课件
- 《项目管理手册》附件1至附件123
- (高频非选择题25题)第1单元 中华人民共和国的成立和巩固(解析版)
- 2019年高考语文试卷(新课标Ⅰ卷)(解析卷)
- 2015年高考语文试卷(新课标Ⅱ卷)(解析卷)
- 德语语言学导论智慧树知到期末考试答案章节答案2024年中国海洋大学
- 检验试剂实施方案范文
- JT-T-1078-2016道路运输车辆卫星定位系统视频通信协议
- 2024-2029年中国人工骨行业发展分析及发展前景与趋势预测研究报告
- 2024年高校教师资格证资格考试试题库及答案(各地真题)
- 扭亏增盈提质增效方案
- 侵权法智慧树知到期末考试答案章节答案2024年四川大学
- 期末考试卷2《心理健康与职业生涯》(解析卷)高一思想政治课(高教版2023基础模块)
- 年度安全生产投入台账(详细模板)
- 中医病历书写基本规范本
- 一年级带拼音阅读
评论
0/150
提交评论